BESSEL FUNCTIONS FOR GL(n) OVER A p-ADIC FIELD

EHUD MOSHE BARUCH

ABSTRACT. We attach Bessel functions to generic representations of
GL,(F) where F is a p-adic field and show that they are given locally
by orbital integrals.

1. INTRODUCTION AND MAIN RESULTS

Let F' be a non-archimedean local field. In [3] we attached Bessel func-
tions to every generic representation of a quasi-split reductive group over
F using a distribution approach similar to Harish-Chandra’s approach for
the character functions. In the present paper we attach Bessel functions to
generic representations of GL,(F') using a Whittaker integral method sim-
ilar to the one in [5],[12],[1] and generalizing the results in [4]. As in [4]
we show that these Bessel functions are given locally by orbital integrals.
Hence it follows from [11] that they have an asymptotic expansion in terms
of the Jacquet-Ye germs.

Acknowledgments. Ithank J. Cogdell, H. Jacquet, I. Piatetski-Shapiro,
and S. Rallis for sharing their insight with me and their constant encour-
agement.

1.1. Main results. We state here our main theorems. We shall only con-
sider here the main Bessel function of a representation which is the one
attached to the open Bruhat cell. Other Bessel functions are described in
Section 8.

Let G = GL,(F) and let B be the Borel subgroup of upper triangular
matrices, A the subgroup of diagonal matrices and N the subgroup of upper
unipotent matrices. Let 1 be a non-degenerate character of N. Let W =
N(A)/A be the Weyl group where N(A) is the normalizer of A. We identify
W with the set of permutation matrices in N(A). This set is also identified
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with S, the symmetric group on n-letters in a natural way. Let
1

(1.1) wo =

1

be the longest Weyl element in W. Let (7, V) be an irreducible admissible
representation of G. We say that w is generic if there exists a nonzero
functional L : V' — C such that

L(w(n)v) =¢(n)L(v) n€ N,veV.

It is well known that such a functional is unique up to scalar multiples. We
call this functional a @ Whittaker functional. Now define

(1.2) Wy(g) = L(n(g)v) veV,geG.

and let G act on the space of these functions by right translations. That is,
if g1 € G and W is a function on G then we define

(1.3) (p(g1)W)(g9) = W(gg1), g€G.

Then the map v — W, gives a realization of © on a space of Whittaker
functions satisfying

W(ng) =¢(n)W(g) n€N, g€Qq.

We denote this space by W(m, ). In Section 3 we define the subspace
WO(m, 1) of W(m,4). In the case where 7 is supercuspidal we have that
WO(m, 1)) = W(m,4). Let a, ..., a1 be the positive roots realized as func-
tions on A (See (2.13)). Let M > 0 be a constant and let

(1.4) AM = AM(wy) ={a € A: ai(a) < M,i=1,2,...n —1}.
Our first main theorem is the following.

Theorem 1.1. Let W € W%(r,4) and M a positive constant. Then the
function

(a,n) — W(awyn)
defined on the set AM x N is compactly supported in N. That is, if W (awon) # 0
and a € AM n € N then n is in some compact set independent of a.

Since AM cover A as M — oo we get the following Corollary.

Corollary 1.2. Let m be a supercuspidal representation of G and W €
W(m, 1) a Whittaker function associated to w. Fix g € BwyB. Then the
function

n — W{(gn)
is compactly supported in N.
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Proof. Write ¢ = njawgns and choose M large enough such that a € AM.
Since W (gn) = 1(n1)W (awgnan) the result follows from Theorem 1.1 O

This result allows us to define Bessel functions for supercuspidal rep-
resentations (See Section 6). In order to treat all irreducible admissible
representations we will need the following result which allows us to move

from W(r, ) to WO(m,1).

Theorem 1.3. Let W € W(r,1). There exists a compact open subgroup
No = No(W) of N such that the function W, € WO(m, ).
Here Wi, 4 is defined by

Whiow(9) = . W (gn)y " (n)dn
0
Corollary 1.4.
WO(m,4) # {0}
Proof. Let W € W(m,) be such that W(e) # 0. Then Wiy, 4(e) # 0 for
every compact open subgroup Ny in N. O

Let Ny C Ny C N3 C ... be a filtration of N with compact open subgroups
Ni.i=1,2,..., such that N = [J2, N;. We denote this filtration by . Let
f+ N — C be a locally constant function.

Definition 1.5. "
/ f(n)dn = lim f(n)dn
N

m—00 Nm
if this limit exists.
Corollary 1.6. Let N = {N;,i > 0} be a filtration of N as above. Let
g € BwyB and W € W(r,v). Then
N
[ Wiy myan
N

is convergent, and the value is independent of the choice of filtration N .

Proof. Let Ny = No(W) be a compact open subgroup of N as in Theo-
rem 1.3. There exists an integer M such that Nyg C Ny, for all m > M. Let
m > M. We have

1

(1.5 oy, Wowlomy™ ()

1 /
= w nin9 ning dnldng
i)y, W omma)wmns)
Applying Fubini and changing variables n = ning we get that the last

integral is the same as

. W (gn)p~" (n)dn



4 EHUD MOSHE BARUCH

By Theorem 1.1 the function n +— Wy, (gn) is compactly supported in N,
hence we can take the limit m — oo in (1.5) to get the value

it [ Wroslanys™ (myn

It is clear that this value is 1ndependent of the filtration N. O
Let g € BwoB and define the linear functional L, : V' — C by

N
- /N Wo(gn)p™" (n)dn

It is easy to see that L, is a Whittaker functional, hence it follows from the
uniqueness of Whittaker functionals that there exists a scalar jr . (g) such
that

(1.6) Ly(v) = jry(9)L(v)

for all v € V. We call j; = jr the Bessel function of 7. (See Section 5 for
other Bessel functions). The Bessel function j, is defined on the set BwyB
and we will prove that it is locally constant there. It is clear that j.(g)
satisfies

ja(nigns) = ¥(nin2)jr(g9), mn1,me € N, g € BuyB,

hence it is determined by its values on the set Awy. As is the case with the
character of the representation [6], the Bessel function j, is expected to be
locally integrable on G. Harish-Chandra’s proof of the local integrability of
the character depended on certain relations between the asymptotics of the
character and certain orbital integrals. In this paper we establish that the
asymptotics of j, are the same as the asymptotics of certain orbital integrals
which were studied by Jacquet and Ye [11]. We now describe the relation
between the Bessel functions and orbital integrals.

Let C°(G) be the space of locally constant and compactly supported
functions on G. Let Z be the center of G and let w be a quasi character on
7.

For ¢ € C2°(G) and g € BwyB we define the orbital integral (see [11] (6))

Jpw(9,®) =/Nxsz¢(n129n2)1/)_1(n1n2)w_1(Z)dnlandz

It follows from [11] that this integral converges absolutely and defines a
locally constant function on BwyB.

Theorem 1.7. Let w be an irreducible admissible representation of G with
central character w,. Let x € G. There exists a neighborhood U, of z in G
and a function ¢ € C°(G) such that

Jrp(9) = Ty (9, D)
for all g € Uy.
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Remark 1.8. Since jr 4 and Jy , are only defined on BwyB we are really
asserting the equality on BwgB N U,;. Another option is to define these
functions as having value zero outside of BwgB in which case the equality
above does hold. In any case, the equality is true up to a set of measure
Zero.

Corollary 1.9. If g — Jy . (9, ) is locally integrable as a function on G
for every ¢ € C°(G) then jry is locally integrable on G.

Hence the question of local integrability of the Bessel function reduces to
the question of the local integrability of the orbital integral.

Our paper is divided as follows. In Section 2 we introduce some notations
including roots, weights and Bruhat ordering. In Section 3 we study some
cones and dual bases in a Euclidean space. These will be applied later for
different bases of roots and weights. In Section 4 we describe the method of
proof used for our main results and prove a result which is needed later using
this method. In Section 5 we prove a more general version of Theorem 1.1.
In Section 6 we define Bessel functions for supercuspidal representations. In
Section 7 we prove Theorem 1.3. In Section 8 we define Bessel functions for
general generic representations, including Bessel functions attached to other
Weyl elements. In Section 9 we prove Theorem 1.7 and in Section 10 we
indicate how to generalize our results to simply laced groups.

2. NOTATIONS AND PRELIMINARIES

Let F' be a non-archimedean local field. Let O be the ring of integers in
F and let P be the maximal ideal in F'. Let w be a generator of P. We
denote by |z| the normalized absolute value of z € F. Let ¢ = |O/P| be the
order of the residue field of F. Then |w| = ¢7!. Let G = GL,(F) and let
A be the group of diagonal matrices in G consisting of matrices of the form

a1
ag
d(al,ag,...,an) =
an
We let
2.1) Z = 2(G) = {d(a,a, ....a) : a € F*}.

Let X(A) = Homp(A, F) be the group of rational homomorphisms. Then
each a € X(A) is of the form

a(d(ay,ag, ..., an)) = a¥ak?...akn
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with k1, ko, ..., k, € Z. We view X (A) as a group under addition where the
addition is defined by

(2:2) (a+pB)(a) = a(a)B(a), B € X(A),acA

We let | X| = X(A) ® R. Then we shall identify |X| with the vector space
of functions |a| = |a|x; A,,...\, from A to R of the form

(2.3) lo|(d(ay, az, ..., an)) = a1 |az]*?...|an |

where A1, Ag,..., A\, € R. Here addition is defined as in (2.2) and scalar
multiplication is defined by

(Ala)(a) = (lal(a))?, |al €|X],a € AX€ER.

We define an inner product on | X| by

n

(24) < a)\1,)\2,...,/\n7 a’yl,’yz,...,’yn >= Z AZ’YZ
i=1

For i,j € {1,2,...,n}, i # j we let o; j : A — F be the functions defined by
ai

ai,j(d(al, A2y .uey an)) =
aj
and |a|; j(a) = |a; j(a)|. Let @ = {c; ;}. Then |®| = {|a/; ;} is a root system
in | X|. We have that ® = ®* U ®~ where ®* = {q, ;j : 4 < j} is the set of
positive roots and @~ is the set of negative roots. Let E;; be the matrix
whose (i, j)th entry is 1 and all other entries are zero. For o = ; j € ® and
for b € F we let

xa(b) = :L‘Z',j(b) =1+ bEi,j
ha(b) = hi’j(b) = bEZ"i — b_lEj’j

For each a € ® we let Ny = {z,(b) : b € F}. Let W = N(A)/A be the
Weyl group of G. We shall identify W with S,,, the symmetric group. In
particular if o € S, then we let w, be the associated permutation matrix.
In particular, w; ;) is the permutation matrix having 1s in the (i,j) and
(4,7) entries and in the (k, k) entries for k£ # 4,j. W acts on ® and |®| in a
natural way. We have that if 4 # j then

(2.5) azq(b)a™ = zo(afa)b), a€ AbeF.
(2.6) Ta(D)z_o(—b" )z (b) = waha(b), b€ F.
(2.7) we(b)w™! = Ty(a)(b), weW,beF

Also, if a, 8 € ® and a # £+ then
(2.8) Ta(b1)xg(b2) = Tatp(ebibg)zg(b2)za(b1)
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where € = 1 and z,44(r) = eif a + 3 ¢ ®. Let N be the subgroup of
upper unipotent matrices. Then every n € N can be written uniquely in

the form
n =[] =)
1>
where b; ; € F and the order of the product is fixed. (Any fixed order is
fine).

2.1. Roots, and Weights. The root system |®| spans a subspace |V| of
| X | given by

(2.9) |V| = {|Oé|,\1,>\2,...,>\n D VIS S DI SN S W 0}

Then A = {|al;iy1 : ¢ =1,...,n — 1} is a basis for |V| consisting of simple
roots. If B is a basis for |[V| then we denote by B* the dual basis (up
to positive scalars) with respect to (2.4). In particular, the fundamental
weights A1, ..., Ap_1 give A*, the basis dual to A where

(2.10)

M= afn—1,-1,~1, =1, A2 =|Qln—2pn-2-9-2...-2, An—1=|C|1,1,.,1,1-n

We write o; = | a;i+1. Then

(2.11) A={ay,....,an 1}
and

(2.12) A" ={A1, ., A1 )

Notice that we have chosen A; so that < a;,A\; >= 0 if 4 # j and that
< a;, A; > > 0. We now recall the three different notation that we have for
the simple roots for future reference:

(2.13) a; = |aliit1 = |alo,....0,1,-1,0,...,0-

Remark 2.1. It is easy to see that if & € ® is a negative root and if r € F
is such that |r| > D for some constant D > 0 then there exists a constant
C = Cp > 0 such that

(2.14) Aho(r)) < C
for all A € A*. Moreover, if |r| > 1 then
(2.15) Alha(r) > 1

Each positive root o € ® can be written as a positive integral combination
of simple roots, that is,

n—1
a = E CiQlig+1
i=1
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with ¢; is a non negative integer. We define the height of the positive root
a to be

n—1
height(a) = Z Ck-
k=1

If « is a negative root thhen we define height(a) = height(—«). It is easy
to check that for j >4
height(ozi’j) =7 —1.

2.2. Bruhat ordering. For each o € ® we let w, € W be the reflection
associated with a. That is, wa, ; = w(; j) Since W is generated by the simple
reflections wy; ;, 1) it follows that each w € W can be written as a product
of simple reflections. Let w € W and write

(2.16) w = wg,wg, - -wg,, B €A, i=1,..,k.
If (2.16) is a minimal expression for w, then we define
(2.17) l(w) =1

(2.18) S(w) ={p,..Bt CA

It is well known (see [9]) that /(w) and S(w) are independent of the the
minimal decomposition (2.16) We define the Bruhat partial order on W by
w' <w <= w' can be written as a subexpression of w, i.e,

wl:wﬂilwﬂh'“wﬂ' 1<ii<io< .. <z <1

U
This Bruhat ordering does not depend on the choice of minimal expression
in (2.16) (see [9]).

It is clear that if w; < we then S(wy) C S(w2). It is well known that wq
is the longest Weyl element in W and that wy > w for all w € W. Also, by
([9] 5.9, example 3) we have that

w1 < We & WIWH = WaWp-
It will be convenient to use the following notation:

Definition 2.2.
SO (w) = S(wwy)
It follows from the above discussion that
(2.19) w; <wy = S%(wy) 2 S%(ws)
We define
(220) S (w) ={a € @' : w(a) <0}, ST(w)={aecd" : wla) >0}

Let S be a subset of simple roots, that is, S C A. Let ®(S) C ® be the set
of roots in ® which are in the span of S. It is well known that ®(S) is itself
a root system. We say that a root in ®(S) has support in S. We let Wg be
the Weyl group associated with S and we identify Wg as the subgroup of
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W generated by the simple reflections wq, o € S. We let wg be the longest
Weyl element in Wg.

Let w = w;;4+1 be a simple reflection. It is easy to see that w sends
a = a;;4+1 to —a and that o permutes all the other positive roots. The
following lemma is well known.

Lemma 2.3.

(a) w permutes the positive roots which do not have support in S(w).
(b) S~ (w) C (S(w)).

(c) If « € ®(S(w)) then w(a) € (S(w)).

Proof. (a) Write w as a minimal product of simple reflections. It is clear
from the above remark on the simple reflections w; ;11 that each simple
reflection in the decomposition of w permutes the positive roots with
support not in S. Hence w also permutes the positive roots with support
not in S.

(b) If « is positive and w(«) is negative then it follows from part (a) that
« is supported on §.

(c) Since w € Wg and a € ®(S) it is clear that w(a) € ®(5). O

Let S%(w) be defined as in (2.2).

Corollary 2.4. Let a € @+ be such that w(a) > 0 then w(a) € ®(S°(w)).

Proof. Let w' = wwy. Since wi = e we have w'(wy(a)) = wwowo(a) =

w(a) > 0. Since wo(a) < 0, it follows from Lemma 2.3 (b) that wy(a) €
O(S(w')). It follows from Lemma 2.3 (c) that w'(wg(a)) € ®(S(w')). Since
w'wg = w we get that w(a) € ®(S(w')) = ®(S(wwp)) = ®(S°(w)). O

Corollary 2.5. Let a € 1 be such that w(a) < 0. Let w; = ww, then
w(a) € ®(S%(wy))

Proof. We have that w(a) = —w(a) > 0. Since w; () > 0 it follows from
Corollary 2.4 that w; (o) € ®(S(wy)). O
2.3. Bruhat decomposition. We define
(2.21) N,= ][] Neo Ni= ][] Mo

a€S—(w) a€eSt(w)

It is well known that |S~(w)| = I(w) and that N = NN, . The Bruhat
decomposition of G is given by
G=|J BuB
weW

Moreover, we have, BwB = NAwN,, with uniqueness of expression. That
is, every ¢ € BwB can be uniquely written in the form g = niawno with
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ni € N, a € A and ny € N,,. Hence, if S~ (w) = {ai,...,oq} then every
g € BwB can be written uniquely in the form

g = nawzy, (r1) « - o, (1)

witha € A;n € N and 71, ...,7; € F. The following lemma will play a crucial
role in the proofs of our main results in this paper. It supplies us with a
tool to move from smaller Bruhat cells to larger Bruhat cells and to cover
G in an inductive way.

Lemma 2.6. Let w € W and assume that S~ (w) = {ay,...,q;}. Assume
also that height(a;) > height(aiy1) for i = 1,...,01 — 1. Let g € BwB and
assume that

g = nawze, (11) * * * Lo, (1)

with t < 1. Assume also that ry # 0. Let

g1 = 9T _qo,(—1/1y)

Then g1 € Bwi B with w1 = ww,, and in particular wy < w. Moreover, if
g1 = niai1wine s the unique decomposition of g1 with ny € N, a1 € A and
ng € Ny, then

a1 = ahy (o) (1)

Proof. By (2.6) we have z, (r:)Z_qo,(—1/7¢) = Wa,ha, (1) o, (—7¢). Hence
(2.22) g1 = nawTqa, (11) -+ * Tay_, (T4—1)Wa, ha, (T1) Ta, (—T1)

Since wq, = wy,! it follows from (2.7) that

“’;tl%i (ri)Wa, = "Ewat(ai)(Ti)-

Since height(c;) > height(a:) for i < ¢ we have that wq,(a;) > 0. (To
see this, write o = g, & = 0 q and w,, = weyp. Since height(ag) >
height(a) it follows that d — ¢ > b — a. The claim now follows from a case
by case computation.) Hence by conjugating wq, he, across the expression
in (2.22) we get that

g = najwing

with a1 and w; as defined above and ng € N. Hence it is clear that g €
BwiB. To get the unique form of ¢ we decompose n3 = ng’ng with n:",,' €
N and ny € Nj,. We can move ng' across ajwi by conjugating to get the

unique form of g;. It is clear that a; gives the required torus part. O
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3. BASES AND CONES IN A EUCLEDEAN SPACE

We recall some facts about dual bases and cones in a Eucledean space.
We shall apply these facts to the base A of |V| defined in Section 2. Let E
be an m dimensional vector space over R equipped with an inner product
< u,v >. If §={vy,...,v} is a set of linearly independent vectors in F
then we let S* = {v{,...,v7 } where v, i = 1,...r, is in the linear subspace
spanned by S and is determined by the following equations

(3.1) < ’Uf,’Uj >= 5i,ja j=1,...,r

Remark 3.1. In most cases we will be satisfied by finding a vector w; in the
linear span of S satisfying < w;,v; >= 0fori # j and < w;,v; >> 0. It is
clear that w; is a positive multiple of UZS and we will not bother normalizing
ws.

Remark 3.2. ([8], pg. 72 ex.7 and ex.8) Write v; = 3" ¢; jv;. Then¢;; > 0.

Moreover, if S is an obtuse set of vectors, that is, < v;,v; > < 0 for i # j

then ¢; ; > 0 and < vzs,vf > > 0 for every 7 and j.

Let A = {vy,...,v} be a fixed base of E. For v € A we denote v* = v2.
Let S C A.

Definition 3.3. We denote by A(S) the set of m vectors where we replaced
v with v* when a € S, That is, A(S) = {w1,wa,...,wn} is given by

v, ifv; €S
w; = )
v ifv €85,

Lemma 3.4.
(a) A(S) is a basis for E.
(b) The dual basis A(S)* = {u1,...,um} is given up to positive scalar
multiplications (see Remark 3.1) by

’UZS, ifv, €8;
(3.2) Ui =9 SU{wi}  p.
v; ifvi €8S.

Proof. (a) Assume that w = ) c;w; = 0 where ¢; € R. Write w = z1 + 2
where z; = Zwes c;v; and 9 = Evﬂs c]-'u;f. It is clear that < z1,79 >= 0
and since w = 0 we have < z1,w >=< xo,w >= 0. Hence < z1,71 >= 0
and < z9,z9 >= 080 1 = 29 = 0. Since both A and A* form a basis we
get that ¢; = 0 for all 5.

(b) Assume v; € S and let u; = v7. Then wu; is in the linear span of S
hence (u;,vj) = 0 for all v; € S. By definition (u;,v;) = 0 for all v; € S,
vj #v; and (u;,v;) =1

Ifv; ¢ S then u; = vfu{v"} is in the linear span of SU{v;}. So (u;,v}) = 0
for all v; & S U {v;}. If v; € S then by definition (u;,v;) = 0.
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Since A(S) is a basis, and u; # 0 we must have < u;, v} ># 0. If we write
u; = cv; + Zvjes cjv; for ¢,c; € R then we have that < u;,v; >= c and by
Remark 3.2, ¢ > 0. O

3.1. Polyhedral cones. Let S be a finite set of vectors in . We define

the cones
c(S) = {Z vt ¢y > 0,1,
vES
C*(S)={veE:<u,v>2>0,v €S}

If S is minimal then S is called a basis for C(S). It is a well known theorem
that these two representations of polyhedral cones are equivalent, that is,
for every S there exist finite sets 77,75 C E such that C(S) = C*(11) and
C*(S) = C(T3). When S = A is a basis of E, this theorem is easy to prove
and is summarized in the following Lemma:

Lemma 3.5.
C(A) =C*(A%), C*(A)=C(AY).
We now assume that A = {v1,...,v,,} is an obtuse base of E, that is,
<w;,v; ><0, i# 7

Notice that our base A of |V| of simple roots defined in (2.11) is obtuse.
By Remark 3.2 it follows that if A is an obtuse base then A* is an acute
base and

(3.3) C(A*) C C(A)
We will also need the following Lemma:
Lemma 3.6. Let A be an obtuse base of E and let S C A. Then
C*(S U A7) = C*(A(S)) = C(A(S)")
Proof. The second equality follows from the fact that A(S) is a basis for E

(see Lemma 3.4 (a)) and from Lemma 3.5. Here we do not need A to be an

obtuse basis.
since S U A* D A(S) it follows that

C*(S U AY) C C*(A(S))
To finish the proof will show that
C(A(S)") CC*(S U AY).
Let A = {v1,...,v } and A(S)* = {uy, ..., un } where by (3.2)
B vy, if v; € S
"= {UfU{”i} if v; & S.

Let u € C(A(S)*). Then u = ) cju; with ¢; > 0 for all i. To show that
u € C*(S U A*) it is enough to show that < u;,z >>0forallz € S U A*.
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(i) Assume that v; € S, hence u; = v?.
If x =v; € S then

< U T >=< ’UZS,U]’ >=0;; > 0.
If £ =v; € A" and v; ¢ S then
<ug, @ >=< v, vl >=0

1Y)
S

i
u = vP = Y wesdive. Since S is a set of linearly independent obtuse
vectors it follows from Remark 3.2 that d; > 0. Hence

since v; is in the span of S. If z = v; € A" and v; € S then we write

< uj, T >=< v, vi >= dy < v, vl >=d; <wvj,vi>>0
1195 J J VR
vt ES

(ii) Assume u; = vf Ui} yhere v; ¢ S. Similar arguments as above will

show that < u;,z >> 0 for all x € § U A* hence we are done. O

4. METHOD OF PROOF

The main method of proof in this paper is to use the Bruhat decomposi-
tion for a cell by cell analysis of the functions that we are interested in. It
is important to understand how the Bruhat decomposition compares with
the Iwasawa decomposition.

We present an explicit method of obtaining such information which follows
a simple pattern. The idea is to analyze the Bruhat cells inductively going
from the closed cell up to the open cell. The induction is on the height of the
respective Weyl element. Another induction takes place inside an individual
cell where we “peel” the root groups one by one. For this process we shall
appeal repeatedly to Lemma 2.6 which allows us to obtain information on a
larger cell from a smaller cell.

The main results in this paper are proved using this method. In this
section we illustrate the method by proving a result that we will need later.
This result is probably known to experts. For the case of GL3(F) see ([4],
Section 3).

4.1. Iwasawa decomposition. Let K = GL,(0O). It is well known that
G =NAK

For every |a| € | X| we extend || (see [10]) to G by defining

(4.1) lal(g) = |el(a)

where g = nak, n € N,a € A,k € K, is an Iwasawa decomposition of g. Tt
is easy to see that || is independent of the choice of decomposition.
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Recall that A* = {Aq,...,A\,} is the set of fundamental weights where
Xi = |a|n—i,..n—ij,..i (See (2.3).) We view ); as a function on G as above.
The main theorem of this section is the following:

Theorem 4.1. Let A € A* and w € W. Then
AMwn) <1
for everyn € N, .

Remark 4.2. Since every n € N can be written in the form n = n n_ for
ny € N} and n_ € N it follows that

wn = wnyn_ = n{wn_

where n% = w™'niw € N. Hence A(wn) = A(wn_). It follows that the

statement in the above Theorem is equivalent to the statement A(wn) <1
for all n € N and A € A*.

Proof. We will proceed with two inductions. The first induction is on [(w).
I(w) =0:

In this case w = e, N,; = {e}. Hence, wn = e. Since A(e) = 1 we are done.
Now let w € W be such that {(w) > 0 and assume that the Theorem is
true for all w; € W such that {(w;) < l(w).
We order the roots in

S™(w) ={a € d®" : w(a) <0} ={a,.,q}

as in Lemma 2.6 so that height(a;) > height(a;q1) for i = 1,...,0 — 1. If
n € N,, then we can write

(4.2) n = Loy (11)Tay (T2) = - Tay (1)

with rq,...,7 € F and t < [. Notice that we can always take t = [ at the cost
of having the last r;s being zeroes. However, we are interested in having ¢
as small as possible. We would like to prove that \;(wn) < 1. We shall do
so by induction on t.

Since w is a permutation matrix whose entries are 0 or 1 it follows that
w € K. Hence if t = 0 then wn = w and A\;(w) = 1. So assume that n is
of the form (4.2) with ¢ > 0 and assume that the Theorem is true for ¢ — 1.
We divide into two cases.

If |r¢| <1 then z,,(r:) € K hence

)\(UJTL) = )\(wwal (Tl) e :Eat—l('rtfl)xat (Tt)) = )\(wxal (Tl) o wat—l(rtfl))'

Hence we can use our second induction assumption to conclude that A(wn) < 1.
If |r4] > 1 then z_o,(—r; ') € K. Hence we have

Mwn) = Mwnz o, (=17 1)) = Mwsa, (r1) - -~ Za, (r)z—a, (=17 1)).



BESSEL FUNCTIONS FOR GL(n) 15

By Lemma 2.6 we have that wnx_at(—rt_l) = niaiwing with w; < ws,
ni,no € N and a1 = hw(at)(Tt)- Hence

Mwn) = Mhu(ay) (1)) AMwins)

By Remark 2.1, we have A(hy(q,)(r¢)) < 1. By our first induction assump-
tion we have A(wyng) < 1. Hence we get the result. O

5. SPACES OF WHITTAKER FUNCTIONS

In this section we define a subspace of the space of Whittaker functions
on GG and prove some properties of this subspace. In particular we prove
Theorem 5.7 which asserts that certain functions on unipotent subgroups
are compactly supported. This is one of our main theorems in this paper.

5.1. Whittaker functions. Let 1) be a character of F' and assume that
1 is identically one on O and nontrivial on P~!. For a unipotent matrix
y € N we set

(5.1) P(y) =¢ry12+ 23+ - +Yn-1,n)-
Where y; ; are the entries of y. We let W = W(G, 9) be the set of functions
W : G — C such that W is smooth on the right and

W(ng) =4¢(n)W(g), n€N,g€q.

Examples of such functions are Whittaker functions associated with generic
representations of G. Other examples are given by projecting compactly
supported and locally constant functions to this space as follows.

Wi(g) = /N flnglpH(n)dn, f € C(G).

we shall study the space of such functions {W; : f € C°(G)} in Section 9.

For every |a| € | X| we extend |a to G as in (4.1)

For w € W we let S°(w) be the set of simple roots defined in (2.2). That
is,

S (w) = S(wwy)

where S(wwy) is defined in (2.18).
Definition 5.1. Let W = W(G, ) be the space of Whittaker functions
defined above. We define W = WO(G,v) C W to be the set of functions

W € W such that for every w € W and every a € S°(w) there exist positive
constants Do < Eq such that if g € BwB then

(5.2) Wi(g) #0 = D, < |a|(g) < Es, a€ S%(w).

In other words, W € WY if for each w € W and each o € S%(w) the
support of W in BwB has bounded image under «.
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Remark 5.2. The condition |a|(g) < E,, a € S°(w) that appears in
(5.2) is redundant since by [10] the support of W is contained in the set
{9 :]a|(9) < C,a € A} for some positive number C. Moreover, if W is a
Whittaker function in the Whittaker model of a supercuspidal representa-
tion of G then it follows from [10] that W is compactly supported mod NZ.
Hence it follows that W satisfies condition (5.2) for every a € A and every
g € G and in particular W € W°.

Definition 5.3. Let a € A. We define the sets
Xoy,0,(a) ={g € GIC1 <al(g) < Ca2}, Ac,0,(a) = {a € A|C; < |a|(a) < Co}
and the sets

XC'l,Cz = ﬂ XCl,C2(a)a AC’l,C2 = m ACl,C2(O‘)'
a€A a€A

Lemma 5.4. Let a € A, Cy < Cy positive numbers and R a compact set
in G. Then
(a) There ezist constants C] < C% such that

Xcn,0n ()R C XC{,CQ (@)

(b) Let Y be a subset of G and assume that for every y € Y there exists
r € R such that yr € Xc¢, c,(a). Then there exist positive constants
C] < Cy such that Y C X¢r ¢ ().

Proof. (a) We can write X¢, ¢,(a) = NAg, ¢, () K. It is clear that
la|(Xey . (@) R) = |a|(Ac,,c,(a))|a|(KR). Since KR is a a compact set in
G and |¢] is continuous the result follows.

(b) Let y € Y and let y = noapko be an Iwasawa decomposition for y. If

r € R then |a|(yr) = |a|(y)||a|(kor). Since KR is a compact set, there
exist positive constants Dy < Dy such that Dy < |a(kor)| < D2 for all

ko € K and r € R. By our assumption, there exists ry € R such that

Ci < |a|(yro) < Ca. Hence C1/Ds < |a(y) < Co/D; and we can choose
C’{:Cl/Dg and Cé:CQ/D]_ O

Corollary 5.5.

(a) The set WO is invariant under right translations by B, i.e, if W € W°
then for every b € B, Wy € W° where Wy(g) = W (gb).

(b) WO is invariant under right integration by compact open subset of
closed subgroups of B, i.e, if H is a closed subgroup of B and X C H 1is
open and compact in H then for every W € W°, Wx € WO where

Wx(g) = [x W(gh)dh.

Proof. (a) We take R to be the Singleton, R = {b '}, where b € B. By
Lemma, 5.4, X¢y 0, (a)b™" C X¢r ¢ (). Thus if W restricted to the set
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BwB is supported on X¢, ¢, (a) N BwB then W), restricted to BwB will
be supported on the set X1 o1 (@) N BwB.

(b) Since W is smooth on the right, W is a finite linear combination of
Wy, for some b; € B, hence (b) follows from (a) O

For each w € W we let A(S°(w)) be the basis of |V| defined in (3.3) and
let A(S%(w))* be the dual basis (up to scalars) that we fixed in Lemma, 3.4
(b). Let M be a positive constant. We define the cone AM (w) C A to be

AM(w) = {a € A:|B|(a) < M, for all B € A(S®(w))*}

Lemma 5.6. Let wi,w € W and M > 0. If wiy < w then there ezists a
constant My > 0 such that

AM(w) € AM(w,).
Proof. By (2.19) and Lemma 3.6
C(A(S%(w1))") € C(A(S®(w))")-

Hence every A € A(S°(w1))* can be written as a non-negative linear combi-
nation of elements in A(S(w))*. Thus there exists a constant M; > 0 such
that |A|(a) < M; for all a € AM(w) and X € A(S®(w))*. O

Our first main theorem of this paper is the following:

Theorem 5.7. Let W € W° and M a positive constant. Then the function
(a,n) — W(awn)
defined on the set AM(w) x N,, is compactly supported in N, . That is,

if W(awn) # 0 and a € AM(w),n € N,, then n is in some compact set
independent of a.

Note that if w = wq then S°(w) = @ hence A(S°(w)) = A* and A(S%(w))* =
A. Tt follows that AM (w) = AM as defined in (1.4). Since N, = N in that
case, Theorem 1.1 follows from the above Theorem.

Proof. Our proof will use a double induction argument as in the proof of
Theorem 4.1. We begin by induction on [(w).

[(w) = 0: That is, w = e.

In this case, N,, = {e} and there is nothing to prove. Now let w € W
and assume the Theorem is true for all wy € W such that [(w) < I(w).
We order the roots in

S_(w) = {al, ...,Otl}

as in Lemma 2.6 so that height(a;) > height(a;y1) for i = 1,...,0 — 1. If
n € N, then we can write

(5-3) N = Loy (T1)Tas (72) - - - Tay (1)
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with r1,...,7 € F and t < [. Here we will use induction on ¢. The precise in-
duction statement is the following: Fix W € W? and M a positive constant.
Let n € N, be written as in (5.3) and a € AM (w). If
W (awn) # 0

then there exists a constant C = C(W,w, M) > 0 independent of a such
that |r;| < C fori=1,...,t.

Assume t = 1. Then we can write n = x4, (r1). We assume W (awn) # 0
with a € AM(w). Since W is smooth on the right, there exists D > 0 so
that

W (97—, (=171)) = W (g)
for every r; € F such that |r1| > D and every g € G. Hence if |r1| > D then

W (awn) = W (awza, (r1)7—a, (=17 ) # 0

By Lemma 2.6 we have that awza, (r1)Z_a, (—71 1)) = n1a1wing with w; = ww,,,
a1 = ahy(ay)(r1) and ny,ny € N. More precisely, it is easy to see that in
this case

AWTa, (11)T—ay (—17 ")) = N3ahy(ay) (r1)w:
for some nz € N. Set
ay = w(ay)

We get that W (awn) # 0 implies that

W (ahqy(r1)wi) # 0.

Set S = S%w;). Since w; € K and since W € W° we have that for

every 8 € C(S1) there exists a positive constant Dg such that
(5.4) B(ahy(ar)(r1)) = Dg

Since a € AM(w) and since w; < w it follows from Lemma 5.6 that there
exists M; > 0 such that a € AM(w;). Hence for every v € C(A(S1)*) =
C*(A(S1)) there exists E, > 0 depending only on M; and +y such that

(5.5) v(a) < E,

By Corollary 2.5 we have that ap € ®(S1). Since g is negative it follows
that

(5.6) ay = Z CaQ

a€Sy

with ¢, < 0 for all @ € S;. If vy € C*(A(S7)) then it follows from the
definition of A(S7) that

<v,a>> 0, foralla€es;
Hence it follows from (5.6) that for all v € C*(A(S1))
<7v,a9>< 0.
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Since C*(A(S1)) = C(A(S1)*) contains the basis A(S7)* and since ag # 0
it follows that there exists vo € C(A(S1)*) such that
(5.7) < 0,9 > < 0.

Let A(S1)* = {7,..-,77n—1} where ~; is defined by (3.2). Then we can write

Yo=Y divi

with d; > 0. Since oy € ®(S7) it follows that < ag,y; > = 0 for all 7 such
that a; ¢ S1. Hence we can (and will) assume that d; = 0 for ¢ such that
a; ¢ S1. (That is, we are replacing vy with 79 = > a;es @ivi- It is clear that
o € C(A(S1)*) and that < 79, g > < 0)

Since 57 is an obtuse set we get that v; = afl is in C(S1) for all 4 such
that a; € S1. Hence vy € C(S1). Hence by (5.4)

Y0(ahaq) (1)) = Dy
Since
Yo(ahao(r1)) = v0(a)Y0(hao (r1))
and since yp(a) < E,, by (5.5) we get that

D
70(hag(r1)) > 22
E’Yo

Write v9 = |a|x,;,...\, (see (2.3). and ap = |a|;; (see (2.13)). Then by (5.7)
<0, 0 >=<la|x, A lali; >=X—X; <0
On the other hand
PN > %
Y0
Hence there exists C' > 0 depending on W,w,a; and M but not on a €
AM () such that

Yo(hao (1)) = Y0(hij(r1)) = |1

W(awzq, (r1)) #0 = |m| < C

We now prove the general case. Let ¢ > 1. Assume that our second induction
hypothesis holds for t—1. Let S~ (w) = {1, ..., oy } with height(a;) > height(a;41)
and let n € N, be of the form

N = Ta,(T1)Tas(r2) - * * Ta, (T1)
Let a € AM (w) and assume that
W(awn) # 0
Let D > 0 be such that if |r;| > D then
W(gz—a, (=17 1)) = W(g)
for all g € G. Assume |r;| > D. Then
W (awn) = W (awnz_o,(—r; 1)) # 0.
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Let g1 = awnz_q, (—r; ). and g = w(cy). Then by Lemma 2.6
g1 = n1ahag (1) wing

with n1 € N, w1 = wwg, and ng € Ny;,. Since W(g1) # 0 we get that
W (ahag (re)wing) # 0

with I[(w1) < l(w). We wish to invoke our first induction assumption for
wi. Notice that we have assumed that a € AM (w) and that |ry] > D. To
use the induction assumption we need to show that ahg, (r;) € AM2(wy) for
some constant My > 0 which depends only on D and M. By Lemma 5.6,
AM () € AMi(w,) for some constant M; > 0.

Let S; = S%(wy). Let v € A(S1)*. By the same arguments as in the ¢ = 1
case we have that

<7v,a9 > <0.

Hence, (see t = 1 case) y(haq(rt)) = |r¢|P with p < 0. It follows that
V(hao(re)) < DP

Now since
V(ahaq (11)) = v(a)y(hao (r1)) < M1 DP

it follows that there exists My > 0 such that aha,(r;) € AM2(wy) for all
a € AM(w) and |ry| > D.

Now it follows from our induction hypothesis that no is inside a compact
set in N,, independent of a and ry.

Since W € WO it follows that for every a € S; there exist positive con-
stants D, < FE, such that

D, < a(ahg, (r)wing) < Eq,
Since n9 is in a fixed compact set it follows from Lemma 5.4 (a) that there
exist positive constants D!, < E! such that
Dyg, < afahay (1)) < E,

Hence if 8 € C(S1) there exists a positive constant D'ﬂ such that

Dlﬁ < Blahay(rt))
The proof now follows word for word the ¢ = 1 case. That is, we find
70 € C*(A(S1)) N C(Sy) such that < g, ap > < 0. Since a € AM (w;) there
exists M,, > 0 such that
Yo(a) < My,
By (5.4)
Y0(ahao (re)) = v0(a)v0(hao (re)) = DYy,

!

D’Yo
Y¥o(Pag(re)) > M,

hence
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Since < 7y, ap > < 0 we have that yo(ha, (1)) = |r¢|P with p < 0 hence |r|
is bounded.
To summarize, we have just proved that if

W (awn) # 0

with a € AM(w) and n written as in (5.3) then there exists C; > 0 indepen-
dent of @ and 71, ..., 741 so that |ry| < C;.

It remains to prove that r1,...,7;—1 are also bounded. Consider the space
{p(za,(re))W : |r¢| < Ci} where

p(Za, (re))W)(g) = W (g2a, (r1))-

Since W is smooth on the right it follows that this space is spanned by
a finite number of functions Wi, ...,W,. By Corollary 5.5 (b), each such
function is in W0, Let a € AM(w) and n' = z4,(r1) - - - Ta,_, (re_1)- Tt
follows from our induction assumption on ¢ that for each such function W;
there exists a constant A; such that

(5.8) Wilawn') # 0 = |rj| < 4, j=1,...,t -1

Let A = max{Aj,...Ap}. Then it is clear that (5.8) holds with A replacing
A;. We now write

W (awn) = W(awza, (11) * *Tay_, (Tt=1)Ta; (1))
= ci(ry)Wilawzg, (1) « T, (11=1)) + ... + cp(re) Wilawza, (1) « T, (Tt—1))

for every ry such that |ry| < Cy. If W(awn) # 0 then at least one of
the summands does not vanish and we can conclude that |r;| < A for i =
1,..,t — 1. Now taking C = max{A, C;} we get our result O

6. BESSEL FUNCTIONS FOR SUPERCUSPIDAL REPRESENTATIONS

In this section we attach Bessel functions to irreducible supercuspidal rep-
resentations of G = GL,(F). This section is not needed in the sequel since
we will later attach Bessel function to every irreducible generic representa-
tion of GL,(F'). The reason we include this section is that the situation for
supercuspidal representations is nicer than the general situation and both
the formulas and proofs are simpler.

Lemma 6.1. Let (m,V) be a supercuspidal representation of G and let
W(m, 1) be the Whittaker model of T (see (1.2)). Then W(m,¢) C WO(G, ).

Proof. Let W € W(m,1). Then by [10], W is compactly supported mod
NZ. Tt follows that for every a € A and every w € W the support of W in

BwB has bounded image under «. (Since the support of W in G already
has bounded image under «.) Hence W € WO. O



22 EHUD MOSHE BARUCH

The main result that allows the definition of the Bessel functions is the
following: (For the proof see Corollary 1.2).

Corollary 6.2. Let (m,V) be a supercuspidal representation of G and let
W e W(n,y). Let w € W and fix g € BwB. Then the function

n — W(gn)
from N, to C is compactly supported in N, .
Let w € W. We define the subtorus A,, to be
(6.1) Ap={a€A: p(n) =4y(n*""), foralln e N, .}
Here n9 = gng~!. It is easy to see that A, = Z(G) and that A,, = A.
Definition 6.3. We say that w is a relevant Weyl element if A, # 0.

It is well known (see [11]) that w is relevant if and only if w = wowg
where S C A and wg is the longest Weyl element in the standard parabolic
subgroup given by S. The set of relevant Weyl elements is the set of Weyl

element of the form
I,
I,

Iy,

where I,,, is identity matrix of order m and mq + mo + ... + m; = n.

Fix a relevant Weyl element w and fix ¢ € NA, wN = NA,wN, . Let
(m, V) be an irreducible supercuspidal representation of G. Let W € W(x, ).
Define

Ly(W)= [ Wl(gn)yp™ (n)dn
Ny
By Corollary 6.2 this integral is absolutely convergent. Let G act on W(m, )
by right translations as in (1.3).

Lemma 6.4.
Ly(p(m)W) = $(m)Ly(W). n € N.

Proof. This is obvious if n € N;. Assume n; € N,/. Then for n € N,; and
g = ngawns with ng € N, a € A,, and n3 € N, we have

W (gnny) = W (nsawngnn,)
(n2)W (awn?®*"ngn,)
(n2)p(ni*")W (awngny )
(n1)W (n2awngn)
(n1)W (gn)
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Here we have used that N, normalizes N,/ and that 1(n"'n*n) = ¢(n™)
for every n € N, and nt € N;. Writing (p(n1)W)(gn) = W(gnn1) and
computing the integral defining L,(p(n1)W) we get our result for n € N;.
Since every n € N can be written in the form n = n*n_ for some n* € N
and n_ € N, we get our result for a general n € N. O

It follows that L, is a Whittaker functional on 7. Hence by the uniqueness
of the Whittaker functional we get that there exists a scalar jr ., (g9) € C
such that

(6'1) Lg(W) = jw,w,w(g)w(e)a W e W(Wa "/))

Jrp,w is a function on N A,wN which we call the Bessel function associated
to m and w. We shall show in Section 8 that jr . is locally constant on
NAy,wN. When w = wy we set jz = jry = Jrpwe- 10 get a formula
for jru.w we notice that since m is supercuspidal there exists a function
W € W(m,v) such that W(e) = 1. (This follows from the existence of a
nontrivial Whittaker functional on 7.) Hence we get from (6.1) that

Corollary 6.5. Let m be a supercuspidal representation of G and let w be
a relevant Weyl element. Then there exists W € W(m, 1) such that

(@) = [ Wign)p~ (wydn, g€ NALwN.

7. PROJECTION INTO WY(G, 1))

In this section we shall show that every W € W(G, ) can be projected
into WY(G,v) by integrating it on a compact unipotent group versus a
character of that group. We start with some preliminary results about Howe
vectors. The proofs can be found in ([4], Section 5).

7.1. Howe vectors. For a positive integer m we denote by K, the congru-
ence subgroup of K given by K,, = e + M,(P™). We let A,, = AN K,,.
Let

2n—2

Let J,, = d"K,,d"".Notice that J,, is expanding above the main diagonal
and shrinking on and below the main diagonal. Let

(7.1) Ny = NN Jy,.
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Let N, = NN J,, and B, = B(\Jy,. Using similar properties of K,,, it is
easy to see that

Jm = Ny A Ny = By Nyy,.
Moreover, for a € ®* let

(7.2) Ja = Na N Jm = {za(r) : |r| < g(heisht(a)=1)m)
and for a € @~ let
(7.3) Jo = Ny N Jny = {za(r) : |r| < g~ Ghelght(@)+1)my
Then
(7.4) Np= ][ Jor Nm= ][ 7a

a€dt acd—

We fix a character ¢ on F' as in Section 3. In particular ¥ = 1 idenitically
on the ring of integers O and r(P~') # 1. Let ¢ be a character of N
obtained from 1 as in (5.1). For m > 1 we define a character ,, on J,, by

where j = Ejnj, I_)j € By, n; € Ny, is the unique decomposition of j. It is

easy to see that 1, is a character on J,,. For each W € W(G, ) we define
Wm = WNm XY by

(7.5) Wn(g) = Wn,, »(9) = /N W (gn)y =t (n)dn.

Since N, +1 D Ny, it is a simple application of Fubini to show that if m > &
then
(7.6) Win(g) = vol(Ng)™* Wi(gn)yp = (n)dn.

Nm

For g1 € G welet (p(g91)W)(g) = W(gg1). The proof of the following Lemma
is the same as the proof of Lemma 5.1 in [4].

Lemma 7.1. Let M be such that p(Ky)W = W and let m be an integer
such that m > 3M. Then

(7.7) P Wi = V(i) Wi, J € Im.
Formulating Lemma 7.1 for functions we get that for m > 3M
(7.8) Win(93) = ¥Ym(3)Wm(g) forall g € G,j € Jp,.

We call a vector W in a representation space of G satisfying (7.7) (or (7.8))
a Howe vector. The above Lemma shows that if the representation space
affords a nontrivial Whittaker functional then non-zero Howe vectors ex-
ist. This property and some uniqueness properties of Howe vectors for ir-
reducible admissible representations of GL,(F') were established in [7]. We
now continue to study the behavior of Whittaker functions satisfying (7.8).
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Lemma 7.2. Let w € W,a € A and o € S®(w). Assume W € W satisfies
(7.8) for some m > 1. Then

W(aw) #0 = afa) €14+ P™

Proof. We divide into two cases. First assume that w is not relevant (see
Definition 6.3) , that is, w is not of the form w = wgwy for some subset S
of simple roots. (Notice that {wgwg : S C A} = {wowg : S C A}.) Then
by [13] Lemma 89, there exists a simple root  such that « = w(8) > 0 but
w(f) is not a simple root. Let » € P~™. Then

(7.9) Yr(r)W(aw) = W(awzg(r)) = W(za(a(a)r)aw) = W(aw)

By our assumptions on the conductor of 9 there exists r € P~™, such that
Yr(r) # 0. Hence W(aw) = 0 and our statement is trivially true.

Assume w = wgwg. Then § = S%(w). (See [9], Section 1.8, ex.2). Let
a € S and let § = wowg(). B is a positive simple root. Arguing as in (7.9)
we get

Pr(r)W (aw) = Pr(a(a)r)W (aw)
for all |r| < ¢~™. Hence W(aw) # 0 implies that a(a) — 1 € P™ which is
the required conclusion. O

Our main theorem of this section is the following. It implies (and in fact
is equivalent to) Theorem 1.3 in the introduction.

Theorem 7.3. Let W € W(G,v). Then there exists a positive integer M
such that Wy, = Wi, » € WO(G, ) for every m > M.

Proof. We need to show that there exists M such that for every fixed m > M
and every w € W, the support of W,,, in BwB has bounded image under
every |a| € S°(w). In other words, the statement of the theorem is equivalent
to the following statement:

(A) Fix w € W and a € S°(w). Then there exists an integer M > 0 and
constants C' < D (depending on m) such that if g € BwB and W,,,(g) # 0
then C < |a(g)| < D.

We shall prove statement (A) by induction on [(w).

[(w) = 0: That is, w = e.

In this case BwB = B = NA. By Lemma 7.1 there exists a positive

integer M such that W, satisfies (7.8) for every m > M. Let m > M and

assume that g = na is in the support of Wy,. Then Wy, (9) = Wi (na) =

PY(n)Wp(a) # 0. Hence Wy, (a) # 0 and by Lemma 7.2, a(a) € 1 + P™ for

every a € §%(e) = A. Since a(g) = a(a) we get statement (A) for w = e.
For the general case, fix w € W, w # e. Let

S_(w) = {(11, ...,al}
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and assume that height(a;) > height(c;41) for i =1,...,1 — 1. We can write
every g € BwB uniquely in the form

(7.10) g = nawn| = NeWq, (11)Tay(r2) * * * o, (11)
withne N,a€ A, ry,...,r; € F. Here

(7.11) N1 = oy (1) Tay (12) -+ - Tay (1)

First case: Fix a € S°(w). Assume W,,(g) # 0 and assume that n; € N,,.
Then Wi,,(9) = ¥(n1)W(gn, ') hence if we let g; = gn; ' we get that
W(g1) # 0. Now Wy, (g1) = Wi (naw) = ¥ (n)W,(aw). Hence W, (aw) #
0 and by Lemma 7.2, a(a) is in a compact set. Since w € K we have that
a(g1) = afa). Hence we proved that if g is of the form (7.10) with n; € N,
and W (g) # 0 then there exists r, € R = Ny, such that a(gry) is in a fixed
compact set. By Lemma 5.4 (b), a(g) is in a fixed compact set.

We shall now consider the second case where ny &€ N,,. If ny &€ Ny,
then there exists ¢ such that zq,(r;)  Np,. This is equivalent to r; = 7;(g)
satisfying |r;(g)| > ¢®+D™ where j = height(a;). (See (7.2)).

Lemma 7.4. Let m be a positive integer and assume that g € BwB 1is of
the form

g = nawni = nawWxqa, (11)Zay (r2) * * * Ta,; (1:)
with i <1 and zo,(r;) ¢ Npm. Let no € Ny, and let g1 = gne. Then in the
decomposition of g1 into (7.10) we have |ri(g1)| = |ri(g)| = |ril.

Proof. We can write

ng = n3%a; (0i)Ta;yy (bit1) -+ Tay (1)

with n3 a product over the positive root subgroups that are different than
@i, ..., . This decomposition of ny is unique and 4, (b;) € Ny, for j =
i,...,0. It follows from (2.8) that r;(¢g1) = b; for j = i + 1,...,] and that
ri(g1) = i + b;. Since |r;| > g(Pheight(@)+m 414 since |b;| < g(Zheight(ei)+1)m
we get that |r;(g1)| = |ri(g)|- O

Fix a € §%w). To finish the proof we need to show that there exists a
positive integer M such that if m > M and if W,,(g) # 0 for g of the form
(7.10) with n; & N, then a(g) is in a fixed compact set. Since ny ¢ Ny,
there exists a maximal ¢ in the decomposition of n; in (7.11) such that
Za; (i) & Np. We shall prove our Theorem by downward induction on this
maximal i. That is, our second induction statement is the following:

(B) Fix i, 1 <i <. There exists an integer M > 0 such that if m > M
and if Wy, (g) # 0 with g of the form (7.10) with z,,(r;) € Ny, and ¢ is the
maximal such index than a(g) is in a fixed bounded set (depending on m,
w and W but not on such g).

We consider the case ¢ = [. Let M; be such that for m > My, W,,
satisfies (7.8) and such that W, satisfies the induction assumption (A) for
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every w; € W such that I(w1) < I(w) and for every a; € S%(w;). That
is, we assume that if g € Bw; B and if W,,,(g) # 0 then «1(g) is in a fixed
compact set. We can enlarge this fixed compact set to be good for every
such w; and every such «;. Let M = 3M;. Assume m > M and assume
that Wy, (g) # 0 where g is of the form (7.10) with z,(r;) € Np,. By our
assumption that height(c;41) < height(c;) we have that o is a simple root
and |ry| > ¢™. By (7.6) we have

1
VO:[(JV]M1 ) Ny,

Since W,,,(g) # 0 there exists ny € N,, such that Wy, (gne) # 0. Let
g1 = gny. By Lemma 7.4 we have that

ri(g1)l = Iri(g)l > 4™ = ¢*™
It follows that z_q,(—1/77(g1)) € Ju,, hence by (7.8)

Wi (9170, (=1/71(91))) = War, (g1) #0

Let g2 = g12_q,(—1/r1(91)). By Lemma 2.6, go € Bw; B with I(w) < I(w).
Moreover, by (2.19), a € S°(w1). Hence by our assumptions on M; above,
War, (g2) # 0 implies that a(g2) is in a fixed compact set. Hence we proved
that for every g satisfying the conditions above such that W,,(g) # 0 there
exists g € R = Np,Ju, such that a(gr) is in a fixed compact set. By
Lemma 5.4 (b), a(g) is in a fixed compact set.

We now prove the general case. Fix 1 > ¢ < [. Let M; be as in the case
i = [. By our induction assumption (B) we can also assume (by enlarging
M) that if m > M; and if W,,,(g) # 0 and if g is of the form (7.10) with
Ta;(1j) & N for some j > i then a(g) is in a fixed compact set.

Let M = 3M; and let m > M. Assume that W, (g) # 0 where g is in the
form (7.10) with x4, (r;) € Nim and 4, (rj) € Ny, for j > i. Then

Wn(g) = ¥r(riq1) - - - Yr(r) Wi (nawza, (r1)) - - * Loy (r:)) #0

Let no = zo,(—71)) - - * Ta;y, (—73)) Then no € Ny, and the above equation
implies that for g1 = gne = nawzy, (r1)) + -+ o, (r;) we have Wp,(g1) =
Win(gne) # 0. We also have

Wi(g) = W, (gn)y~ " (n)dn

1
vol(Na,) Nm

Since Wi, (g1) # 0 it follows that there exists n3 € Ny, such that Wy, (g1n3) # 0.
Let g2 = ging By Lemma 7.4 we have that |r;(g2)| = |ri(g9)| = |ri]- We
divide into two cases. First assume that there exists 7 > ¢ such that
Ta;(1j(92)) & Nar, - Then it follows by our assumptions on M; that a(gs) is

in a fixed compact set. Since go = gry for r € R = Ny, we get that a(g) is

in a fixed compact set.

Wm(gl) = W, (gln)wil(n)dn
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Next assume that z,(r;(g2)) € Nas, for every j > 4. Using (7.8) as above
we get that Wy, (93) # 0 where

93 = NawTa, (r1(92)) * - - T, (Ti(g2))
and g3 = gong with ny € Npy, Since

|Ti(92)| _ |Tz(g)| > q(2height(a¢)+1)m > q(Zheight(ai)-I-l)?)Ml

it follows from (7.3) that z_,,(—1/7;(92)) € Ju, hence by the same argu-
ments as in the case 1 = [ we get that a(g) is in a fixed compact set. O

8. BESSEL FUNCTIONS

In this section we attach Bessel functions to irreducible generic repre-
sentation of G = GLy,(F). The definition of these functions depend on
Theorem 5.7 and Theorem 7.3 and is identical to the definition of the Bessel
functions in [4]. Since the proofs are the same as in ([4], Section 6) we shall
omit them. Given an irreducible generic representation of G we will attach
a Bessel function for each relevant Weyl element w. This Bessel function
will be defined on a subset of BwB and will be locally constant there. If the
representation is supercuspidal then our definition here will coincide with
the definition in Section 6 making Section 6 redundant. We are primarily
interested in the Bessel function which is attached to the longest Weyl el-
ement wy which we call the main (or principal) Bessel function. We shall
provide full proofs in this case for the sake of completeness.

Let w € W be a relevant Weyl element. That is, there exists S C A such
that w = wgwp. Let N and N, be the subgroups of N as defined in (2.21).
We define the subtorus A,, as in Section 6 to be

Ay ={a € A: p(n) =y(n*), forallne N .}

Here n9 = gng~!. Let (m,V) be an irreducible generic representation of G
and let W € W(m, ). By Theorem 7.3 there exists a positive integer M
such that if m > M then W,, € W° (See (7.5) for the definition of W,,.)
Fix m > M and let g € NA,wN,,. We define

1 -
= 4V01(Nm) No Wm(gn)"/” 1(n)dn

By writing ¢ = niawne and using Theorem 5.7 it follows that the integral
above converges. (See also Corollary 6.2). The main result of this section is
the following;:

(8.1) Lgw(W)
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Proposition 8.1.
(a) Lg.,(W) is independent of m > M.
(b) Ly is a Whittaker functional on W(m, 1), that is, for every n € N,
Lguw(m(n)W) = 1p(n) Lg,w(W).
(c) If W € WO then
Jow(W) = - W (gn)yp~t(n)dn.
The proof is the same as in ([4] Proposition 6.1.) We will prove the

Proposition for the case w = wqy. (see also the introduction for the case
w = wp.)

Proof. In that case N, = N, N, = {e} and A, = A. Using of the Fubini
theorem, it is easy to see that if m1 > m > M then

1 - —
vol(No) . Win(gn)y 1(n)dnz/le W(gn)y ' (n)dn.

Since Ny, cover N when m; — oo it follows that

LynoW) = o [ Wonlamys™
1

= lim ———— —1
mllgloo VOl(Nm) le Wm(gn)w (n)dn

= lim W (gn)y 1 (n)dn

mi1—0Q le

Now (a) and (c) follow from the last line of the above equation. For part
(b) we fix ny € N and consider the above limit for p(n;)W. Since N, cover
N we have that there exists M; such that n; € N, for all m > M;. Now a
simple change of variable in the integral above will give the result. O

By (b), Lg, is a Whittaker functional, hence by the uniqueness of Whit-
taker functionals it follows that there exists a scalar jr . (g) such that

(8'2) Lg,w(W) = jﬂ,w,w(g)W(e) g € NA,wN,W € W(W,"/))'

We call jr . (g) the Bessel function attached to w and denote by jr .y = jir 4w (9)
the Bessel function attached to . It is easy to see that

(8.3)  Jrpw(nignz) = p(ni)p(n2)jryw(g), g€ NAywN,ni,n €N.
Lemma 8.2. There exists W € W°(m,4)) such that

Jraww(9) = /N_ W(gn)yp~t(n)dn, g€ NA,wN.

Proof. Tt follows from Theorem 7.3 that there exists W € W0(m,v) = W(m, %) N WO(G, )
such that W(e) = 1. The result now follows from from Proposition 8.1
(c). O
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Corollary 8.3. jry.(9) is locally constant on NA,wN .

Proof. By (8.3) it is enough to prove that jr 4 .(g) is locally constant on
Aypw. Let W be as in Lemma 8.2. By Theorem 5.7 n — W (awn) is com-
pactly supported on the set (AM (w)N A,) x N, . It follows from Lemma 8.2
that jr . is locally constant on AM (w)NA,). Since AM (w) cover A,,) when
M — oo we get our result. O

We end this section by describing the Bessel functions attached to the
contragredient representation.

Lemma 8.4. Let w be a generic representation of G and 7 the representation
contragredient to w. Then

jﬁ=¢71=W(g) = jﬁ;’lﬁ:’wowwo(g_l) g € NAwwN

Proof. Let 7 be the involution of G defined by 7(g9) = wig~'wo For each
W € W(r,) we define W7(g) = W(r(g)). By [10] the mapping W — W7
is a bijection between W(w, 1) and W(#,9~!). If g € G is written in the
Iwasawa decomposition in the form g = nak where n is upper triangular a
is diagonal and k € GL,(O) then

7(g) = (whn"wo) (woa ™~ wo) (whk ™~ wp)

is an Twasawa decomposition for 7(g). Hence, if W € W' (r, ) then W™ € WO (7,9 1).
Using Lemma 8.2 we get that

jfr,wfl,w(g) = j7r,1/J,T(w) (T(g)) g€ NAwWN-

Now 7(w) = wowwy and we claim that jr .y wowwo (T(9)) = Jrpwewwo(97")
for all g € NA,wN.. Since both functions satisfy (8.3) with 1! replacing
1 it is enough to show that they coincide on the set A,w. Since 7(g) = g+
for all g € A, w we get our result. O

Corollary 8.5. Let jry = jrpw, be the Bessel function attached to .
Then

j’fr,l/)‘l(g) = jﬂ',w(g_l), g c B’LU()B

9. ORBITAL INTEGRALS

In this section we show that the Bessel functions for the longest Weyl
element (the main Bessel function) defined in Section 8 are given locally by
orbital integrals. These integrals were studied in [11]. We will do this in two
steps. We will show that the Bessel function restricted to a compact set in G
is given by an integral of a Whittaker function which is compactly supported
mod N. That is, if we restrict ourselves to this small neighborhood, we can
replace a Whittaker function in the representation space with a different
Whittaker function (not necessarily in the representation space) which is
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compactly supported mod NZ. Then we use the fact that each Whittaker
function which is compactly supported mod NZ comes from an integral
of a function in C°(G). We will start from the second part. Let w be a
character of Z and let W, (G,%) C W(G, ) be the subspace of functions
W € W(G, ) satisfying

(9.1) Wi(gz) =w(z)W(g) g€ G,z€ Z.

Let C2°(G) be the space of locally constant functions on G with compact
support. For each f € C®(G) we let

Wilo) =Wi(o) = [ flng)p~ (n)in.
It is clear that Wy € W(G, ). We also define

(9.2) Wrw(g / / f(nzg)y ™t (n)w™ ! (2)dndz, f € CZ(G).

It is clear that Wy, € W, (G,%). The image of these maps is well known.
(See for example [4], Lemma 7.1). It is given in the following Lemmas:

Lemma 9.1. Let f € CX(G). Then Wy is compactly supported mod N
and the map f — Wy is a linear map onto the space of compactly supported
functions mod N in W(G,1)).

Lemma 9.2. Let f € S(G). Then Wy, is compactly supported mod NZ
and the map f — Wy, is a linear map onto the space of compactly supported
functions mod N in W, (G, ).

Let |V| be the subspace of | X| given by |V| = {|&|r; ro,0rm : T1 + T2 + ... + 15, = 0}
(see (2.9)). Let Q = {px, ..., fn—1} be a basis for |[V|. Let C1 < C2 be positive
constants and define

AQ(Cl,Cg) = {a eA: C1 < ﬂi(a) <Cyt=1,...,n— 1}.

Lemma 9.3. A function W on G is compactly supported mod NZ if and
only if there exist constants C1,Cy such that W is supported on NAg(C1,Co)K

Proof. We can write Ag(C1,C) = ZA' where A" = {d(a1, as,...,an—1,1) € Ag(C1,C2)}.
Since Q is a basis, it is clear that A’ is compact. Hence if W is supported on
NAQ(Cy,Cq)K then it is compactly supported mod NZ. Now assume W is
compactly supported mod NZ. Then W is supported on a set of the form
NZR for some compact set R. Since the sets NAg(C1,C2)K for different
choices of C; and Cy are open sets that cover G we get that the sets of

the form NAg(C1,C2)K cover R. Since R is compact there exist constants
C1,C} so that R C NAg(C;,C4)K. Hence NZR C NAg(C,CHK. O

For each w € W we define the set M(w) C A* as follows.
M(w) ={a’la € A, a ¢ $%(w)}
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Remark 9.4. If w; < w then by (2.19), S%(w;) D S%(w), hence M (w) C M (w).

Let E be a positive constant. We let

Ay(E) ={a € A: |X(a) > E for every A € M(w).}

Theorem 9.5. Let W € WY, w € W and E > 0. There erists a function
W1 € W(G, ) compactly supported mod NZ such that
(9.3) Wi (niawng) = W(niawng)
for alla € A, (E) and ny,ne € N.
Remark 9.6. Let C; < C3 be positive constants and let A, ¢, = Aa(C1, C2).
By Lemma 9.3 we have that Wi being compactly supported mod NZ is
equivalent to Wi being supported on a set of the form NAc, ¢, K for some
C1,C5. Hence we can find Wi € W compactly supported mod NZ such

that (9.3) holds if and only if we can find constants C;,Cy such that the
function

(9-4) Wi(g) = {

satisfies (9.3). Hence, we shall use (9.4) to define the desired W;. Notice
that if we define Wi by (9.4) then W(g) = 0 = Wi(g) = 0 hence we only
need to prove (9.3) for g = njawne such that a € A, (E) and W(g) # 0.

W(g), ifg€ NAc,c,K;
0, otherwise.

Proof. We shall prove this theorem by an induction on /(w) as in the proof
of Theorem 4.1, Theorem 5.7 and Theorem 7.3.

l(w) =0

In this case w = e, S%(w) = A, M(w) = § and A, (E) = A. We need to
show the existence of a Whittaker function Wi, compactly supported mod
NZ such that W, = W on B. Since W € WY it follows that the support of
W on B is contained in a set of the form NA¢, ¢,. Define W; as in (9.4).
Then W; satisfies the requirements of the Theorem.

We turn to the general case: [(w) > 1. Fix w € W such that {(w) > 1.

Remark 9.7. By the induction assumption, and by Remark 9.6, if we are
given a set of positive constants {Ey, : [(w1) < [(w)} then there exists a
Whittaker function Wi compactly supported mod N Z such that (9.3) holds
for every wy such that [(w;) < I[(w) and every a € AV (E,, ).

Fix E > 0 and let a € A, (E). We need to show the existence of a function
Wi as above such that

(9.5) Wi(awn) = W (awn)

for all a € Ay(E) and all n € N, . Let S;;, = {a1,...,0q4}. We can assume
that height(c;) > height(a;y1),7 = 1,...,[—1. Every n € N can be written
(not uniquely) in the form

(96) N =Taq, (Tl) T Loy ('rj)
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for 0 < j < [. We shall prove by an induction on j that there exists a
Whittaker function W; as above such that (9.5) holds for every a € A, (E)
and every n of the form (9.6).

Jj=0.

For j = 0 we need to show the existence of W, as above such that

Wi(aw) = W (aw)

for all a € A, (FE). By the remark above it is enough to consider the case
where a € Ay(E) and W(aw) # 0. Since every § € A* is a positive
linear combination of positive simple roots (see Remark 3.2), it follows from
Remark 5.2 that for every 8 € M(w) C A* there exists a constant Dy such
that

97) 18(a)] < Dy
Since a € A, (E) it follows that for every 8 € M(w) we have
(9.8) E < |B(a)|.

It is possible that the set of such a is empty in which case we take W, = 0
(or Wy given by (9.4) for any constants C; < Cs.) By Lemma 7.2, we have
that for every o € S°(W) there exist constants C, < D, such that

(9.9) Co < |a(a)| < Dq

Putting together (9.7), (9.8), (9.9) and using that M (w) U S°(w) is a basis
for |V| (see Lemma 3.4 (a)) we get by Lemma 9.3 that a satisfying the
conditions above is in a set of the form A, ¢, for some constants C; < Ch.
Hence we can use (9.4) to define Wj.

The general case: Assume j > 1 and let n € N} be in the form (9.6).
Since W is smooth on the right, there exists a positive constant D such that
if |r| > D then

W(ga:,aj (_7,,71)) = W(g)a g€ G.

Assume that 7 is of the form (9.6) with a € A, (F) and |rj| > D. We have
(9.10) W (awn) = W(awnx,aj(—rjfl)).

By Lemma 2.6, g = awna:_aj(—rj_l) € BwiB with w; < w. Moreover, if
we write g = niajwing for n; € N, a1 € A and ny € N, then we have
a1 = ahy(q;)(rj)- Let B € M(wr). Since |r;| > D it follows from Remark 2.1
that there exists Cg,p > 0 such that [B(hy(q;)(r5))| > Cp,p. By Remark 9.4
we have that § € M(w) hence |f(a)] > E. Hence we get that for every
|rj| > D and every a € Ay, (FE)

B(a1)| = 1B(ahw(a;)(r5))] > ECp,p.
It follows that if we take Fy = min{EC3 p : f € M(w)} then a1 € Ay, (E1).
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Remark 9.8. If M(w) =  then M(w;) = ( and A, (E1) = A for every
E; > 0. Hence, in that case, we can take any F; that we like and a1 will be
in Aw1 (El)

It follows from our first induction assumption that there exists a function
Wi given by (9.4) so that
(9.11) Wl(nlalwlng) = W(nlalwlng)

for every ny € N, a1 € Ay, (E1) and no € N, . Since W is also smooth on
the right it follows that there exists a constant D; > D such that

(9.12) Wi(awnz _q, (—rj_l)) = Wi(awn)
when |r;j| > D;. Combining (9.10), (9.11) and (9.12) we get that

Wi(awn) = W (awn)
for every a € A, (E) and every n of the form (9.6) with |r;| > D;. We now
consider the case |r;| < Dy. Fix r such that |[r| < Dy and let W' € W be
defined by
(9-13) W' = p((ze; (r))W

By our induction hypothesis on j, there exists a Whittaker function W;
compactly supported mod N Z such that

(9.14) Wi(awn) = W' (awn)
for all a € A, (E) and all n of the form
(9.15) n=Ta,(r1) " Ta;_,(rj-1)

Let W2 = p((za; (—7))W1. Then W; is compactly supported mod NZ and
from (9.13) and (9.14) we have

Wa(awnz,, (r)) = W(awnz,, (r))

for every a € A, (E) and every n of the form (9.15). Since both W and
Wy are smooth on the right it follows that the above equality holds in a
neighborhood of . Since the set {r : |r| < D1} is compact it follows that
we can cover it by a finite number of such neighborhoods. Since we can
assume that each Wo = Wa(r) is given by (9.4) it follows that we can take
the constants in (9.4) such that the equality will hold for all r; such that
|‘l“j| < D;. O

Remark 9.9. Let w be a quasi-character of Z. If W € WY satisfies
W(zg) = w(z)W(g) for every z € Z and g € G then W; given by (9.4)
satisfies W1(zg) = w(z)Wi(g) for every z € Z and g € G.

For W € W° and g € BwoB we let

(W, 9) = Jy0 (W) = /N W (gn) " (n)dn
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Corollary 9.10. Let W € WO, Let U be a compact set in G. Then there
exists a function W1 € W compactly supported mod NZ such that

J(Wlag) = J(Wa g)
for every g € U N BwyB.

Proof. Let A* = {)\1,...; A\y—1}. Since U is compact it follows that )\; is
bounded on U for ¢ =1, ...,n— 1. Hence there exists a constant F such that
A(g) > E for every A € A* and every g € U. Let g € U[)BwoB. Then
g = niawgyns for some ni,no € N and a € A. Let A € A*. By Theorem 4.1
we have

IA(g)] = [A(n1awons)| = |A(a)|[A(wonz)| < |A(a)l-
Since A(g) > E it follows that A(a) > E, hence a € AE. By Theorem 9.5 we
can find Wy in W compactly supported mod N Z such that
Wi(awgn) = W (awgn)

for every n € N and a € Ay (E). In particular we have Wi(gn) = W(gn)
for every g € U N BwyB and n € N. Hence J(W1,g) = J(W,g) for such g
which is what we wanted to prove. O

Let ¢ € CX(G) and w a quasi-character of Z. Let g € BwyB. We define

Jyw(9,9) ///fnlzgnz Y (n1) ™ (ng)w ™ (2)dnidngdz

It follows from [11] that this integral converges absolutely. It is easy to see
that

Tso(,9) / Wpogn)ip= (n)dn = J(Wp.r9)

where Wy, is defined by (9.2).
The following Corollary 1mphes Theorem 1.7 in the introduction.

Corollary 9.11. Let 7 be an irreducible admissible generic representation
of G' with central character w,. Let jr, be the Bessel function of m as
defined in Section 8. Let U be a compact open set in G. Then there exists
a function ¢ € CX(QG) such that

(9.16) Jpwr ($,9) = Jrp(9)
for every g € U N BuyB.

Proof. Recall that jr (9) = jrpw(9) is the Bessel function associated to
the longest Weyl element wg. By (8.2) there exists W € W°(m, ) such that
Jrw(g) = J(W, g) for every g € BwoB. Since the central character of 7 is wy
it follows that W € W3_(G,v) = W, (G, %) NW°(G, ). By Corollary 9.10
and by remark 9.6 and Remark 9.9 there exists W7 € W, (G,) which
is compactly supported mod NZ such that J(Wy,g9) = J(W,g) for every
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g € UNBwyB. By Lemma 9.2 there exists ¢ € C2°(Q) such that Wy, = W;.
Hence

Tpw(b,9) = T Wow, 9) = J(W1,9) = J(W, g) = jry(9)
for every g € U N BwyB. a

Remark 9.12. If 7 is supercuspidal then there exits ¢ € C°(G) such that
(9.16) holds for every g € BwoB. That is, in this case the Bessel function
is globally given by an orbital integral. This follows from Remark 5.2, from
Lemma 9.2 and (8.2).

10. CONCLUDING REMARKS

10.1. Simply laced groups. Our results in this paper remain valid for
split, simply laced algebraic groups over a local non-archimedean field. The
main facts that we need is that Lemma 2.6 remains valid in that setting and
that the root system of such groups is obtuse (see Section 3). The proofs
will be the same as in the GL(n) case. Since Lemma 2.6 is not valid in the
setting of a split reductive group we can not yet generalize the results for
that case. However, we believe that the results are still true in the general
setting of a quasi-split group over a non-archimedean local field.

10.2. Distributions. In [3], Bessel functions were defined using a distribu-
tion approach for every generic representation of a quasi-split group over a
local field. In [2],[4] it is proved that in the case of GLy(F') and GL3(F') these
are the same as the functions we defined here. Moreover, these functions are
locally integrable and give the Bessel distribution everywhere. We believe
that this should be true for the Bessel functions defined here. In Corol-
lary 1.9 we have reduced the question of local integrability of the Bessel
functions to the Local integrability of the orbital integrals. By [11], these
orbital integrals are given asymptotically by certain germs. It remains to
find good bounds for these germs.
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