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Abstract. We establish a spectral identity between global Bessel distributions with re-
spect to generic cuspidal representations of an odd orthogonal group and the metaplectic
cover of a symplectic group which are related by the theta correspondence. We also
provide analogous local identities for square-integrable representations.
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1. Introduction

In a seminal paper [Shi73], Shimura obtained a famous correspondence f 7→ F between
modular forms of half-integral weight and those with integral weight. A well-known result
of Waldspurger [Wal81] relates the Fourier coefficients of f to central values of the twisted
L-functions of F . This relation has seen many applications and it was explicated and
extended by several authors [Koh85, KZ81, Shi93, KS93, Koj00, Koj99, KM96] (to mention
a few). The most general formula in this context is given in [BM07].

Nowadays, the Shimura correspondence is often viewed representation-theoretically in
the framework of the theta correspondence. The basic idea, which is due to Howe [How79],
is to relate two classical groups G, G′ (or covers thereof) as a dual reductive pair inside
a bigger metaplectic group and to use the Weil representation of the latter to obtain a
correspondence between (a subset of) the representations of G and G′. (In Shimura’s case

the dual pair is (SO(2, 1) = PGL2, S̃L2).) Over the years, the theta correspondence became
one of the most useful and well-developed tools in the study of representations of classical
groups and their interrelations, both globally (automorphic representations) and locally.
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The properties of these correspondences are well studied in the literature. (The standard,
albeit not very recent, source is [MVW87].)

The results of [BM07] use the relative trace formula which was introduced by Jacquet
[Jac87a] to study Waldspurger’s formula from a different point of view. A closely related
approach is due to Iwaniec [Iwa87]. The trace formula approach can be formulated for other
cases of dual reductive pairs. In this paper we focus on the dual pair (G,G′) consisting of
the split odd orthogonal group G and the metaplectic cover G′ of the symplectic group,
both of rank n. We consider this pair both in the p-adic and the number field case.
The representation theory of the two groups are intimately related through the theta
correspondence. Our main global result is a spectral identity between representations in
the generic spectrum which are related by the theta correspondence. The precise statement
is Theorem 2. Roughly speaking, it relates the square of a Fourier coefficient of forms on
the metaplectic group to the central value of L-functions of their theta lifts.

The result was announced in [Jac05]. It is a typical spectral identity in the context of the
relative trace formula and a direct generalization of the case n = 1 considered by Jacquet
in [Jac87a]. In contrast, our approach here does not use the relative trace formula. Instead
we use the theta correspondence. Our main tool is Furusawa’s formulas [Fur95] relating
the Fourier coefficients of theta lifts and Bessel coefficients. These formulas generalize the
n = 1 case which was worked out by Waldspurger and they already play a major role in
his work. The main new ingredient in deriving the spectral identity is to use the obvious,
but crucial, fact that the adjoint of the theta lift is simply the theta lift in the converse
direction.

We remark that the geometric comparison of the relative trace formula at hand was
carried out in [MR04], once again using the theta correspondence. The results here can
be viewed as the spectral counterpart of [ibid.], although they are formally independent of
each other.

We also have an analogous result in the local case. Let F be a p-adic field and fix
a non-trivial character ψ of the additive group of F . Let G = SO(2n + 1, F ) (split)

and G′ = Mp(2n, F ). Denote by Πψ
2 (G) (resp. Πψ

2 (G′)) the set of equivalence classes of
irreducible square-integrable ψ-generic (genuine) representations of G (resp. G′). It will be

seen below that the Howe duality provides a bijection (depending on ψ) between Πψ
2 (G)

and Πψ
2 (G′).1 (Cf. [MS00] for an analogous result for even orthogonal groups.)

Let S(G), resp. S(G′) denote the space of compactly supported locally constant (genuine)
functions on G, (resp. G′). Denote by S∗(G) and S∗(G′) the dual spaces of distributions
on G and G′ respectively. In §2.3 we define certain distributions Bπ ∈ S∗(G), (resp. Bπ′ ∈
S∗(G′)) for π ∈ Πψ

2 (G) (resp. π′ ∈ Πψ
2 (G′)).

We say that f ∈ S(G) and f ′ ∈ S(G′) match if their respective orbital integrals are
compatible. (See [MR04, Proposition 6.1] and §4.3 below.)

We prove the following identity of Bessel distributions.

1An analogous result for square-integrable representations was recently established by Ichino and Gan
[GI] – see also [GS].
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Theorem 1. Suppose that π ∈ Πψ
2 (G) and π′ ∈ Πψ

2 (G′) correspond under the Howe ψ-
duality. Then

Bπ(f) = Bπ′(f ′∨)

for all matching pairs f ↔ f ′. Here f ′∨(g) = f ′(g−1).

We remark that by adjusting the matching condition in [MR04], it is possible to restate
the identity as Bπ(f) = Bπ′(f ′) for any matching pairs f and f ′ under the revised matching
condition.

Once again, the proof is based on the machinery of the Weil representation. We first
derive an explicit Howe duality (in both directions) between π and π′ realized in their
corresponding Whittaker models. Indeed, this idea goes back to Waldspurger [Wal91] who
used it in the case n = 1. It was used by Jiang-Soudry [JS03] in the supercuspidal case (for
general n). As in the global case the spectral identity reduces to an adjointness relation
between the explicit Howe duality maps in both directions. This approach is simpler than
those used in [BM03] and [BM05], where a more detailed analysis of the Bessel distribution
was required.

It should be possible to extend the local result to the general case (of generic repre-
sentations). This will enable us to formulate and prove a precise formula for the square
of Fourier coefficients of metaplectic cusp forms as in [BM07]. We hope to pursue this
problem in the future.

Finally, we mention that there are additional closely related (and equally important)
results of Waldspurger in the context of the theta correspondence ([Wal85]). They also
admit a relative trace formula interpretation [Jac87b, Jac86], which in turn admit higher
rank generalization. The geometric comparison of these trace formulas as well as others
resulting from theta correspondence was carried out in [MR05, MR04, MR99b, MR99a].
It is likely that our approach can be applied to obtain the spectral identities underlying
these comparisons.

We would like to thank the referee for carefully reading this article and for pointing out
a gap and a few inaccuracies in the original version and providing useful suggestions to
improve the paper.

1.1. Notation and Preliminaries. Until §5 F is a local non-archimedean field of char-
acteristic zero and O is its ring of integers. We fix a non-trivial character ψ of F .

For a vector space W , we use 〈v1, . . . , vm〉 to denote the span of vectors v1, . . . , vm in W .
Denote by Ma,b the space of a× b matrices.

Let V = M2n+1,1(F ), with the standard basis e1, . . . , e2n+1, and the symmetric bilinear
form 〈·, ·〉V given by 〈ei, e2n+2−j〉V = δi,j. Then V has a splitting V = V+ ⊕ V− ⊕ 〈en+1〉,
where V+ = 〈e1, . . . , en〉 and V− = 〈e−1, . . . , e−n〉, (where we set e−i = e2n+2−i). We let
G = SO(V ) be the special orthogonal group of (V, 〈·, ·〉V ) (acting on the left). We denote
by S(G) the space of locally constant compactly supported functions on G.

Let V ′ = M1,2n(F ), with the standard basis f1, . . . , f2n and the anti-symmetric form
〈·, ·〉V ′ given by 〈fi, f−j〉V ′ = δi,j for i, j = 1, . . . , n where we set f−j = f2n+1−j. Then V ′
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has a splitting V ′ = V ′+⊕V ′−, where V ′+ = 〈f1, . . . , fn〉 and V ′− = 〈f−1, . . . , f−n〉. Denote by
Sp(V ′) the symplectic group of (V ′, 〈·, ·〉V ′) acting on the right.

LetG′ = Mp(V ′) be the metaplectic cover of Sp(V ′). (Cf. [Kud, Chapter I] and [MVW87]
for basic facts and conventions about G′.) An element in G′ has the form (g,±1) with
g ∈ Sp(V ′). Multiplication in G′ is given by (g1, ε1)(g2, ε2) = (g1g2, č(g1, g2)ε1ε2) where č is

the cocycle defined in [RR93]. We write g̃′ = (g′, 1) for any g′ ∈ Sp(V ′). (Of course, g′ 7→ g̃′

is not a homomorphism.) We denote by S(G′) the space of locally constant compactly
supported functions on G′ which are genuine, i.e., such that φ(g,−1) = −φ(g, 1) for all
g ∈ Sp(V ′).

Denote by e and e′ the identity elements of G and G′ respectively.
Let P (resp. P ′) be the Siegel parabolic subgroup of G (resp. Sp(V ′)) and let U (resp. U ′)

be its unipotent radical. We identify the Levi subgroups M and M ′ of P and P ′ with GLn
via

m(g) =

g 1
g∗

 , m′(g) =

(
g

g∗

)
g ∈ GLn .

where we define

g∗ = wn
tg−1wn g ∈ GLn

where wn is the matrix with ones on the non-principal diagonal and zeros elsewhere.
Denote by N , N ′ and N ′′ the maximal unipotent subgroups of SO(V ), Sp(V ′) and

G′′ = GLn respectively, consisting of upper unitriangular matrices. Thus, N = m(N ′′)nU
and N ′ = m′(N ′′) n U ′. Note that by the property of the cocycle, for all n ∈ N ′ and

g′ ∈ Sp(V ′) we have ñ′g̃′ = ñ′g′ and g̃′ñ′ = g̃′n′. In particular n′ 7→ ñ′ embeds N ′ in G′.
Denote by T ′′ the maximal torus of G′′ consisting of diagonal matrices. Let T = m(T ′′)

and T ′ = m′(T ′′) be the maximal tori of G and Sp(V ′) respectively. We fix good maximal
compact subgroups K, K ′ and K ′′ of G, G′ and GLn(F ) respectively, so that the Iwasawa
decomposition G = NTK holds for G (and similarly for G′, G′′).

When t ∈ T , we write tei = tiei for i = 1, . . . , n so that t = diag(t1, . . . , tn, 1, t
−1
n , . . . , t−1

1 ).
It will sometimes be convenient to set tn+1 = 1 and t−i = t−1

i . Similarly, when t′ ∈ T ′,
we write fit

′ = t′ifi, i = 1, . . . , n. We enumerate the simple roots of G by αi(t) = ti/ti+1,
i = 1, . . . , n (where tn+1 = 1). Similarly, we set α′i(t

′) = t′i/t
′
i+1, i = 1, . . . , n (where

t′n+1 = 1). (Note that for convenience we do not set α′n to be a root for Sp(V ′).) We use
δ(t) and δ′(t′) to denote the modulus functions of the Borel subgroups of G and Sp(V ′)

respectively. Thus δ(t)
1
2 =

∏n
i=1|ti|n+ 1

2
−i and δ(t′)

1
2 =

∏n
i=1|t′i|n+1−i.

Let Z be a symplectic space over F with a polarization Z = Z+⊕Z−. We write a typical
element of Sp(Z) (again, acting on the right on Z) as ( A B

C D ) where A ∈ Hom(Z+, Z+), B ∈
Hom(Z+, Z−), C ∈ Hom(Z−, Z+) and D ∈ Hom(Z−, Z−). Consider the Weil representation
ωψ of the group Mp(Z) (with respect to the Rao cocycle defined by the splitting). It can
be realized on S(Z+) as follows. (Cf. [Kud, Chapter I].) For g = ( A B

C D ), let

r(g)φ(z) =

∫
Z−/ kerC

ψ(
1

2
〈zA, zB〉+

1

2
〈z′C, z′D〉 − 〈zB, z′C〉)φ(zA+ z′C) dgz

′
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where the measure dg on Z−/ kerC is uniquely determined by the property that r(g) is
unitary on L2(Z+). Then we take ωψ(g)φ(z) = βψ(g)[r(g)φ](z) where βψ(g) is a certain
root of unity defined in [Kud, Theorem 4.5].2

In our case we take

(1) Z = Hom(V, V ′) ' V ∗ ⊗ V ′ ' V ⊗ V ′ 'M2n+1,2n

where we identify V ∗ with V through 〈·, ·〉V . On the level of matrices, G× Sp(V ′) acts on
Z by

z(g, h) = g−1zh g ∈ G, h ∈ Sp(V ′), z ∈ Z.
We define the Weil representation ωψ using the polarization Z± = V ⊗ V ′±. Later on we
will denote Z± by Z1

± (and ωψ by ω1
ψ) to distinguish it from a different polarization that

will be used.
We endow the additive group of F with the self-dual Haar measure with respect to ψ.

We will use the following convention for the normalization of Haar measures on certain
unipotent groups of G. Let α be a positive root of T in G. We have α(t) = ti/tj where
either j > i or j < 0 and j 6= −i. Let Uα = {xα(t) : t ∈ F} be the corresponding
one-parameter subgroup of N where we normalize xα by the relation xα(s)ej = ej + sei.
This identifies Uα with F and we take the corresponding Haar measure on Uα. If S is a
T -stable subgroup of N then as an algebraic variety it is isomorphic (via multiplication, in
any order) to the direct product of the Uα’s contained in S [Hum75, §28.1]. We take the
product measure as our choice of Haar measure on S. In a similar vein we fix a choice of
Haar measures for subgroups of N ′. We will also fix arbitrary Haar measures on G and G′.

2. Bessel distributions

For now let G be any totally disconnected group. Given an irreducible representation
π of G, a functional ` on π and a functional `∨ on the contragredient π∨, we define the
distribution

Bπ`,`∨(f) = `∨(` ◦ π(f)) f ∈ S(G).

In practice, it is convenient to realize `∨ as ˆ̀◦ ι where ˆ̀ is a functional on a representation
π̂ which is equivalent to π∨ via an intertwining operator ι : π∨ → π̂. In turn ι is defined in
terms of a non-zero G-invariant pairing (·, ·) between π and π̂, so that (v, ι(v∨)) = v∨(v).
In this case we also write

B(π,π̂,(·,·))
`,ˆ̀

(f) = Bπ
`,ˆ̀◦ι(f)

We refer to the triple (π, π̂, (·, ·)) as a pair of representations in duality.
In particular, suppose that (π, V ) is unitary and [·, ·] is an invariant inner product on

V . We can think of (π, π̄, [·, ·]) as a pair of representations in duality where π̄ is realized
on V̄ (the vector space whose underlying set is V , but with conjugate C-structure; as an
operator π̄(g) = π(g)). Fix a sequence Kn of compact open subgroups of K which form a
basis for the topology. We say that an orthonormal basis B of V is admissible if B∩ V Kn

2The notation in [Kud] suggests that β depends on a choice of a standard basis as well. In fact, β
depends only on the splitting.
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spans V Kn for any n. Let `, `′ be linear functionals on V . Then `′ is a linear functional on
V̄ where `′(v) = `′(v). We then have

B(π,π̄,[·,·])
`,`′

(f) =
∑
ei∈B

`(π(f)ei)`′(ei) =
∑
ei∈B

`(π(f)ei)`′(ei)

for any admissible orthonormal basis B of V (cf. [Jac10]).

Lemma 1. Suppose that we have two pairs of representations in duality ((πi, Vi), (π̂i, V̂i), (·, ·)i)
of totally disconnected groups Gi, i = 1, 2, linear functionals `i of Vi, ˆ̀

i of V̂i, i = 1, 2,
fi ∈ S(Gi), i = 1, 2 and linear transformations A : V1 → V2 and Â : V̂2 → V̂1 satisfying the
following properties

(1) (Av1, v̂2)2 = (v1, Âv̂2)1 for all v1 ∈ V1, v̂2 ∈ V̂2,
(2) π2(g) ◦ A = A for all g in a small open subgroup of K,
(3) `1 ◦ π1(f1) = `2 ◦ A,

(4) ˆ̀
2 ◦ π̂2(f2) = ˆ̀

1 ◦ Â.

Then for f∨2 (g) = f2(g−1) we have

B(π1,π̂1,(·,·)1)

`1,ˆ̀1
(f1) = B(π2,π̂2,(·,·)2)

`2,ˆ̀2
(f∨2 )

Proof. Upon replacing `2 by 1
vol(K)

∫
K
`2 ◦ π2(k) dk we may assume that `2 ∈ V ∨2 . In this

case ι1(`2 ◦ A) = Â(ι2(`2)). Indeed, for all v ∈ V1

(v, ι1(`2 ◦ A))1 = `2(Av) = (Av, ι2(`2))2 = (v, Â(ι2(`2)))1.

Therefore, we have

B(π1,π̂1,(·,·)1)

`1,ˆ̀1
(f1) = ˆ̀

1 ◦ ι1(`1 ◦ π1(f1)) = ˆ̀
1 ◦ ι1(`2 ◦ A) = ˆ̀

1 ◦ Â(ι2(`2)) =

ˆ̀
2 ◦ π̂2(f2)(ι2(`2)) = ˆ̀

2 ◦ ι2(π∨2 (f2)`2) = ˆ̀
2 ◦ ι2(`2 ◦ π2(f∨2 ))) = B(π2,π̂2,(·,·)2)

`2,ˆ̀2
(f∨2 ).

�

2.1. Whittaker models and invariant pairings. From now on we are back to the case
G = SO(V ) and G′ = Mp(V ′). Define non-degenerate characters ψN on N and ψN ′ on N ′

by

ψN(u) = ψ(u1,2 + u2,3 + . . .+ un,n+1), u ∈ N ;

ψN ′(u
′) = ψ(u′1,2 + u′2,3 + . . .+ u′n−1,n +

u′n,n+1

2
), u′ ∈ N ′.

Let C(N\G,ψN) be the G-space of smooth functions W : G → C such that W (ug) =
ψN(u)W (g) for all u ∈ N , g ∈ G, with G acting by right translation. Recall that for any
W ∈ C(N\G,ψN) there exists a constant C such that W (t) = 0 if t ∈ T and |αi(t)| > C for
some i. We say that an irreducible representation π of G is ψ-generic if it can be realized
as a subspace Wψ(π) of C(N\G,ψN). The space Wψ(π) is uniquely determined by the
equivalence class of π and is called the Whittaker model of π. We write Πψ(G) for the set of
equivalence classes of irreducible ψ-generic representations of G. (In fact, it is independent
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of ψ because T acts transitively on the ψ’s.) If π ∈ Πψ(G) then π∨ ∈ Πψ−1
(G) where π∨

denotes the contragredient of π. (In fact, π∨ ' π.) We write λψ for the linear functional
on Wψ(π) given by λψ(W ) = W (e). Thus, λψ is a Whittaker functional on Wψ(π).

Similarly, an irreducible genuine representation π′ of G′ is called ψ-generic, (and write

π′ ∈ Πψ(G′)) if it can be realized as a subspace W̃ψ(π′) of the G′-space C(N ′\G′, ψN ′)
consisting of smooth genuine functions W ′ : G′ → C such that W ′(ũ′g′) = ψN ′(u

′)W ′(g′)

for all u′ ∈ N ′, g′ ∈ G′. (This time, Πψ(G′) depends on ψ.) Once again, the space W̃ψ(π′)
is uniquely determined by the equivalence class of π′ [Szp07]. Also, if π′ ∈ Πψ(G′) then

π′∨ ∈ Πψ−1
(G′)-generic. (Note that π′∨ is not necessarily equivalent to π′.) Let λ̃ψ be the

Whittaker functional on W̃ψ(π′) given by λ̃ψ(W ′) = W ′(e′).
The following Lemma follows directly from [LM09, Theorem 3.1, Lemma 2.6, Corollary

3.4]; cf. also[CS80, §6].

Lemma 2. Suppose that π ∈ Πψ(G) is square-integrable. Then there exists λ > 0 and for
any W ∈ Wψ(π) there exists a non-negative φ ∈ S(F n) such that

(2) |W (t)| ≤ δ(t)
1
2φ(α1(t), . . . , αn(t))

n∏
i=1

|αi(t)|λ, t ∈ T.

(Note that
∏n

i=1 αi(t) = t1.) The bilinear form

(3) (W, Ŵ )Wψ(π) :=

∫
N\G

W (g)Ŵ (g) dg W ∈ Wψ(π), Ŵ ∈ Wψ−1

(π∨)

is absolutely convergent and defines a G-invariant pairing between Wψ(π) and Wψ−1
(π∨).

Similarly, suppose that π′ ∈ Πψ(G′) is square-integrable. Then there exists µ > 0 and

for any W ′ ∈ W̃ψ(π′) there exists a non-negative φ′ ∈ S(F n) such that

|W ′(t̃′)| ≤ δ′(t′)φ′(α′1(t′), . . . , α′n(t′))
n∏
i=1

|α′i(t′)|µ t′ ∈ T ′.(4)

(Once again,
∏n

i=1 α
′
i(t
′) = t′1.) The form

(5) (W ′, Ŵ ′)W̃ψ(π′) =

∫
N ′\G′

W ′(g′)Ŵ ′(g′) dg′ W ′ ∈ W̃ψ(π′), Ŵ ′ ∈ W̃ψ−1

(π′∨)

defines a G′-invariant pairing between W̃ψ(π′) and W̃ψ−1
(π′∨).

Proof. The inner product formulas were established in [LM09]. The inequalities were not
explicitly given, so we give a derivation here. We consider the inequality (2) of W (t), the

other inequality for W ′(t̃′) is established similarly.
Use the notations in [LM09]. Let B be the Borel subgroup of G containing N . By

[LM09, Theorem 3.1], W (t) is a finite combination of functions of the form δ
1
2
P (t)φP,χ(t)

where P is a parabolic subgroup of G containing B, χ is a character of T so that the
χ-generalized eigenspace of the Jacquet module JP (π) of π with respect to P contains a
supercuspidal component, and φP,χ ∈ FP,χ. We only need to establish the bound of (2) for
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any such function δ
1
2
P (t)φP,χ(t), as it is clear that the sum of two functions of t of the form

(2) is again bounded by a function of the form (2).

By [LM09, (2.2) and Lemma 2.6(3)] δ
1
2
P (t)φP,χ(t) = δ

1
2
B(t)φ′B,χ(t) for a function φ′B,χ ∈

FB,χ. By [LM09, Lemma 2.6(2)], φ′B,χ is bounded by q−〈Reχ,H(t)〉∏n
i=1 φ

′
i(αi(t)) with φ′i

being Schwartz functions. From the square-integrability of π we have q−〈Reχ,H(t)〉 ≤∏n
i=1 |αi(t)|λ

′
with λ′ > 0 ([Cas]). Thus we get the bound (2) for δ

1
2
P (t)φP,χ(t). �

We write Πψ
2 (G) for the square-integrable representations in Πψ(G). For any π ∈ Πψ

2 (G)

Wψ(π) = (Wψ(π),Wψ−1

(π∨), (·, ·)Wψ(π))

is a pair of representations in duality. Similarly we define Πψ
2 (G′) and

W̃ψ(π′) = (W̃ψ(π′), W̃ψ−1

(π′
∨
), (·, ·)W̃ψ(π′)).

Thus, if π ∈ Πψ
2 (G) then Wψ(π) is an irreducible subspace of L2(N\G,ψN) where the

latter (by an abuse of notation) denotes the subspace of C(N\G,ψN) consisting of functions
such that

∫
N\G|f(g)|2 dg < ∞. Conversely, any irreducible subspace of L2(N\G,ψN) is

(abstractly) a square-integrable (and ψ-generic) representation of G. This was proved
recently independently by Delorme, Sakellaridis-Venkatesh and Tang [Del, SV, Tan]

2.2. Local Bessel period. Suppose again that π ∈ Πψ
2 (G). We define the Bessel func-

tional of π on the space Wψ(π). The Bessel subgroup is by definition

R = {g ∈ G : ge2 = e2, ge3 = e3 (mod 〈e2〉), . . . , gen+1 = en+1 (mod 〈e2, . . . , en〉)}.
Note that R = (R ∩N)H where H is the subgroup of G which fixes e2, . . . , en+1 and fixes
e−2, . . . , e−n modulo 〈e−1〉. Explicitly

H = {m(Aξ,η) : ξ ∈ F n−1, η ∈ F ∗} where Aξ,η =


η
ξ1 1
...

. . .
ξn−1 1


while

R ∩N = U ] o {m(

(
1 0
0 u

)
) : u upper unitriangular in GLn−1}

where U ] = {u ∈ U : 〈uen+1, e−1〉V = 0}. For instance, for n = 3, R consists of the
matrices in G of the form 

∗ 0 0 0 ∗ ∗ ∗
∗ 1 ∗ ∗ ∗ ∗ ∗
∗ 0 1 ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ 0
0 0 0 0 1 ∗ 0
0 0 0 0 0 1 0
0 0 0 0 ∗ ∗ ∗


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Define a character ψR on R by

(6) ψR(r) = ψ(r2,3 + · · ·+ rn,n+1), r ∈ R.
Set

(7) P(W ) =

∫
R∩N\R

W (r)ψR(r)−1 dr =

∫
H

W (h) dh

where dr is a Haar measure on R ∩N\R and dh is a suitable Haar measure on H.
Let also R0, R1 be the stabilizers of the vectors e2, . . . , en+1 (resp., e1, . . . , en+1). Thus,

R1 is the stabilizer of en+1 in U , i.e. the derived group of U . Note that R1 is T -stable and
is endowed with a measure as in §1.1. We also remark that R0, R1 and R are unimodular,
R0 = R1H and ψR is trivial on R0. By (7) we get

(8) P(W ) =

∫
R1\R0

W (r) dr

for an appropriate Haar measure on R1\R0.

Lemma 3. The integral in (7) is absolutely convergent and defines an (R,ψR)-equivariant
functional on π.

Proof. The second part of the Lemma is clear. To show convergence we write the integral
as

(9)

∫
F ∗

∫
Fn−1

W (m(Aξ,η)) dξ |η|1−n d∗η

Let Aξ,η = ntk be the Iwasawa decomposition with n ∈ N ′′, k ∈ K ′′ and t = tξ,η =
diag(t1, . . . , tn). Then

(10)
n∏

j=k+1

|tj| = max(1, |ξk|, . . . , |ξn−1|) k = 1, . . . , n− 1 and
n∏
j=1

|tj| = |η|.

Note that δ(t)
1
2 = |t1|n−

1
2

∏n
i=2|αi(t)|mi with mi ≥ 0. On the other hand,

|t1| =
|
∏n

i=1 ti|
|
∏n

i=2 ti|
=

|η|
max(1, |ξ1|, . . . , |ξn−1|)

≤ |η|.

Thus, by (2), the integrand in (9) is bounded by

φ(α1(t), . . . , αn(t))|η|
1
2

for some Schwartz function φ ∈ S(F n). Indeed, the support condition of φ gives upper
bounds on |αi(t)|, i = 1, . . . , n and therefore upper bounds on |ti|, i = 1, . . . , n and hence
on |ξi|, i = 1, . . . , n − 1 and |η| as well. Thus, we can ignore the non-negative powers
of |αi(t)| and |η| occurring in (2). Thus the integral (9) is majorized by the convergent
integral ∫

|ξi|<Ci

∫
|η|<Cn

C|η|
1
2 dξ d∗η

for some positive constants C,C1, . . . , Cn. �
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2.3. Definition of local Bessel distribution. Let π ∈ Πψ
2 (G). We define the local

relative Bessel distribution of π by

Bπ(f) := BπP,W(f) = BWψ(π)

P,λψ−1 (f) =
∑
Wi

P(π(f)Wi)Wi(e) f ∈ S(G)

where the sum is over an admissible orthonormal basis of Wψ(π) with respect to the inner
product

[W1,W2] =

∫
N\G

W1(g)W2(g) dg.

Note that BπP,W does not depend on the choice of the Haar measure on G since rescaling
it affects both π(f) and the inner product formula (3) in the same way.

Similarly we define the local Bessel distribution of π′ by

Bπ′(f ′) := Bπ′W̃,W̃(f ′) = BWψ(π′)

λψ ,λψ−1 (f ′) =
∑
W ′i

π′(f ′)W ′
i (e
′)W ′

i (e
′) f ′ ∈ S(G′)

where {W ′
i} is an admissible orthonormal basis of W̃ψ(π′) with respect to

[W ′
1,W

′
2] =

∫
N ′\G′

W ′
1(g)W ′

2(g) dg.

As before, Bπ′
W̃,W̃

(f ′) does not depend on the choice of Haar measure on G′. (It only

depends on the measure on N ′ chosen above.)

3. Local theta correspondence

We now wish to realize the local Howe duality explicitly in terms of an integral transform
on the corresponding Whittaker models. This was done in [JS03, §2] in case where π is
supercuspidal, and is modeled on the global computations of Furusawa ([Fur95]). We need
to extend this to the square-integrable case. The only issue is convergence.

Recall that G and G′ comprise a dual pair inside M = Mp(Z). Let ωψ be the Weil
representation of M.

3.1. Explicit theta correspondence I. Recall the realization (ω1
ψ,S(Z1

+)) of the Weil

representation according to the G-invariant splitting Z1
± = Hom(V, V ′±). We sometimes

identify Z1
+ with M2n+1,n. The explicit action of ω1

ψ is described by formulas [MR04,
(3.1)–(3.3)]. In particular:

ω1
ψ(g, m̃′(h))Φ(X) = | det(h)|n+ 1

2
γψ(1)

γψ((deth)2n+1)
Φ(g−1Xh),(11)

ω1
ψ(e, (̃ 1 B

1 ))Φ(X) = Φ(X)ψ(Tr(tXw2n+1XBwn)/2).(12)

Here γψ(a) is a certain root of unity (Weil’s constant).
Let E1 ∈ Z1

+ be given by E1ei = E1e−1 = 0, and E1e−i−1 = fi, i = 1, . . . , n. Thus, E1

corresponds to
∑n

i=1 ei+1 ⊗ fi under the isomorphism Z ' V ⊗ V ′ (cf. (1)).
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Let π ∈ Πψ
2 (G). For Φ ∈ S(Z1

+) and W ∈ Wψ(π) set

(13) (θψΦW )(g′) =

∫
R1\G

ω1
ψ(g, g′)Φ(E1)W (g) dg.

The following is an extension of [JS03, Corollary 2.2] from the supercuspidal case to the
square-integrable case.

Proposition 1. The integral (13) converges absolutely and θψΦW ∈ L2(N ′\G′, ψN ′). More-

over, there exists Φ and W such that θψΦW 6≡ 0.

Proof. For the convergence, we may assume, upon replacing Φ by ω1
ψ(e, g′)Φ that g′ = e′.

Using Iwasawa decomposition, we have to show the convergence of∫
GLn

∫
R1\U
|ω1
ψ(vm(h), e′)Φk(E1)W (m(h)k)||deth|−n dv dh

for any k ∈ K where Φk = ωψ(k, e′)Φ. Without loss of generality we can assume that
k = e. By (11), the above integral can be written as∫

GLn

∫
Mn,1(F )

|Φ(h−1e2, . . . , h
−1en, en+1 + h−1v)W (m(h))||deth|−n dv dh.

By changing the variable we can write this as∫
GLn

∫
Mn,1(F )

|Φ(h−1e2, . . . , h
−1en, en+1 + v)W (m(h))||deth|1−n dv dh.

Using the Iwasawa decomposition again, now for GLn, we write h = bk′′ where b is upper
triangular and k′′ ∈ K ′′. Let t be the diagonal part of b and write b−1 = (xi,j)1≤i,j≤n. The
Haar measure is given by

n∏
i=1

|ti|i−1 dt ⊗1≤i<j≤n dxi,j dk
′′.

Again, we may suppress k′′, so it is enough to show the absolute convergence of the integral
over b. By (2), the latter integral is majorized by∫∫∫

φ(t−1
2 , . . . , t−1

n , v, xi,j, α1(t), . . . , αn(t))
n∏
i=1

|ti|
1
2

n∏
i=1

|αi(t)|λ dv ⊗1≤i<j≤n dxi,j dt

where φ is a Schwartz function in n− 1 + n+
(
n
2

)
+ n variables and λ > 0. Note that the

integrand is compactly supported in the variables t2, . . . , tn ∈ F ∗. Therefore, the integral
is majorized by the convergent integral∫

φ′(t1)|t1|λ+ 1
2 d∗t1

for an appropriate φ ∈ S(F ∗).

To show that θψΦ is non-zero we can assume that W (e) 6= 0 and let Φ be a non-negative
function supported in a small neighborhood Ξ of E1 such that Φ(E1) = 1. Then the set
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{g ∈ R1\G : ω1
ψ(g, e′)Φ(E1) 6= 0} consists of g with g−1E1 ∈ Ξ, which is an arbitrarily

small neighborhood of R1. Therefore, θψΦW (e′) 6= 0.

To show that θψΦW ∈ C(N ′\G′, ψN ′), i.e., that

(14) (θψΦW )(ỹ′g′) = ψN ′(y
′)(θΦW )(g′)

for all y′ ∈ N ′ we may separate to the case where y′ = m′(u′), u′ ∈ N ′′ and the case y′ ∈ U ′.
In the first case, by (11)

(θψΦW )(m̃′(u′)g′) =

∫
R1\G

ω1
ψ(g, g′)Φ(E1u

′)W (g) dg =

∫
R1\G

ω1
ψ(x−1g, g′)Φ(E1)W (g) dg

where x is any element in N such that its (1, j)-th entries are 0 for j > 1, and (i+1, j+1)-th
entry is u′i,j for 1 ≤ i < j ≤ n. Since W (xg) = ψN(x)W (g) = ψN ′(y

′)W (g), a change of
variable g 7→ xg gives (14) in this case.

In the case y′ ∈ U ′, by (12) we have

ωψ(g, ỹ′g′)Φ(E1) = ψ(y′n,n+1/2)ωψ(g, g′)Φ(E1) = ψN ′(y
′)ωψ(g, g′)Φ(E1).

We again obtain (14).
To see that θΦW ∈ L2(N ′\G′, ψN ′) we write

θψΦW (g′) =

∫
R1\G

ω1
ψ(g, g′)Φ(E1)W (g) dg =

∫
N\G

∫
R1\N

ω1
ψ(ng, g′)Φ(E1)W (ng) dg.

We will show the stronger statement

(15)

∫
N\G
|
∫
R1\N

ω1
ψ(ng, ·)Φ(E1)ψN(n) dn||W (g)| dg ∈ L2(N ′\G′).

(By the previous argument we know that∫
R1\N

ω1
ψ(ng, ·)Φ(E1)ψN(n) dn ∈ C(N ′\G′, ψN ′)

for all g ∈ G.) Using Iwasawa decomposition, this amounts to showing that

t′ 7→ δ′(t′)−
1
2

∫
T

|
∫
R1\N

ω1
ψ(nt, t̃′)Φ(E1)ψN(n) dn||W (t)|δ−1(t) dt ∈ L2(T ′).

At this stage we will use the following Lemma which will be proved below.

Lemma 4. There exists φ ∈ S(F 2n) such that

(δ′(t′)δ(t))−
1
2 |
∫
R1\N

ω1
ψ(nt, t̃′)Φ(E1)ψN(n) dn| = φ(y1, . . . , yn, z1, . . . , zn)

n∏
i=1

|ti/t′i|
1
2

where yi = ti
t′i

and zi =
t′i
ti+1

, i = 1, . . . , n (with tn+1 = 1).
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By the Lemma and the bounds (2) it suffices now to show that for any λ > 0 and
φ ∈ S(F 2n) we have

t′ 7→
∫
T

φ(y1, . . . , yn, z1, . . . , zn)
n∏
i=1

|αi(t)|λ|ti/t′i|
1
2 dt ∈ L2(T ′),

or alternatively, by a change of variables ti 7→ tit
′
i, that

(16) t′ 7→
∫
T

φ(t1, . . . , tn, α
′
1(t′)t−1

2 , α2(t′)t−1
3 , . . . , α′n(t′))|t1|λ

n∏
i=1

|α′i(t′)|λ|ti|
1
2 dt ∈ L2(T ′).

Observe that for any ϕ ∈ S(F 2) and ν > 0 there exists ϕ′ ∈ S(F ) such that∫
F ∗
ϕ(t, x/t)|t|ν dt ≤ ϕ′(x).

It follows that the left-hand side of (16) is bounded by

ϕ′(α′1(t′), . . . , α′n(t′))
n∏
i=1

|α′i(t′)|λ

for some ϕ′ ∈ S(F n). Hence it belongs to L2(T ′) as required. �

Proof of Lemma 4. The integration over R1\N can be replaced by integration over the
maximal unipotent of GLn+1. We have

ω1
ψ(ut, t̃′)Φ(E1) = γ|det(t′)|n+ 1

2 Φ(
n∑
i=1

t−1
i u−1ei+1 ⊗ t′ifi)

where γ is a root of unity which depends on t, t′ but not on u.
Thus, the argument of Φ is the matrix

t−1
1 x1,2t

′
1 t−1

1 x2,3t
′
2 . . . t−1

1 x1,n+1t
′
n

t−1
2 t′1 t−1

2 x2,3t
′
2 . . . t−1

2 x2,n+1t
′
n

t−1
3 t′2 . . . t−1

3 x3,n+1t
′
n

. . .
...
t′n


where n−1 = (xi,j). Using the change of variables

xi,j 7→
ti
t′j−1

xi,j 1 ≤ i < j ≤ n+ 1

the integral becomes
∏n

i=1|ti|n+1−i|t′i|n+ 1
2
−i times

∫
F(n+1

2 )
Φ(


x1,2 x2,3 . . . x1,n+1

t−1
2 t′1 x2,3 . . . x2,n+1

t−1
3 t′2 . . . x3,n+1

. . .
...
t′n

)ψ(
t1
t′1
x1,2 + · · ·+ tn

t′n
xn,n+1) dxi,j.
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The last integral is the value at (y1, . . . , yn, z1, . . . , zn) of (the restriction to a certain sub-
space of) a partial Fourier transform of Φ. �

In general, for an irreducible representation π of G there exists a genuine representation
Θψ(π) of G′ such that

ωψ[π] := ωψ/ ∩φ∈HomG(ωψ ,π) kerφ ' π ⊗Θψ(π)

as representations of G × G′. It is known that Θψ(π) is of finite-length. Let π′ be an
irreducible representation of G′. One says that π and π′ correspond under the Howe ψ-
duality if

(17) HomG×G′(ωψ, π ⊗ π′) 6= 0,

i.e., if π′ is a quotient of Θψ(π). By the Howe duality conjecture Θψ(π), if non-zero, admits
a unique irreducible quotient. In other words,

(1) π′ satisfying (17) is uniquely determined by π, and
(2) dim HomG×G′(ωψ, π ⊗ π′) = 1.

The conjecture is known in many cases [Wal90, How89, LST11]. However, for our purposes
we will only need the earlier weaker results of [Kud86].

Corollary 1. Suppose that π ∈ Πψ
2 (G). Then the span V ′ of {θψΦW : Φ ∈ S(Z1

+),W ∈
Wψ(π)} is an irreducible subrepresentation π′ of L2(N ′\G′, ψN ′). The representations π∨ '
π and π′ correspond under the Howe ψ-duality.

Proof. The map Φ 7→ (W 7→ θΦW ) is clearly an element of

HomG

(
ω1
ψ,Hom(Wψ(π), L2(N ′\G′, ψN ′))

)
and hence can be viewed as an element of HomG

(
ω1
ψ,Wψ(π)∨ ⊗ L2(N ′\G′, ψN ′)

)
since

Wψ(π)∨ ⊗ L2(N ′\G′, ψN ′) is the G-smooth part of Hom
(
Wψ(π), L2(N ′\G′, ψN ′)

)
(since

Wψ(π) is admissible). In particular, V ′ is a quotient of Θψ(π∨) and hence it is of fi-
nite length. Since V ′ is unitary, it is a direct sum of irreducible representations. On the
other hand, since all irreducible quotients of Θψ(π∨) have the same supercuspidal sup-
port [Kud86], it follows that V ′ is the unique irreducible generic representation with this
supercuspidal support. �

Lemma 5. We have

(18) (θψΦW )(e′) = P(π(f)W )

whenever f satisfies

(19)

∫
R

f(rg)ψR(r) dr =

∫
R0\R

ω1
ψ(rg, e′)Φ(E1)ψR(r) dr.
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Proof. By (8),

(θψΦW )(e′) =

∫
R0\G

ω1
ψ(g, e′)Φ(E1)P(π(g)W ) dg

=

∫
R\G

∫
R0\R

ω1
ψ(rg, e′)Φ(E1)ψR(r)P(π(g)W ) dr dg

=

∫
R\G

∫
R

f(rg)P(π(rg)W ) dr dg =

∫
R\G

f(g)P(π(g)W ) dg

as claimed. �

3.2. Explicit theta correspondence II. To go in the other direction we work with the
mixed model realization of the Weil representation as in [MVW87]. Namely, decompose
Z1

+ ' V ⊗ V ′+ as (
(V− ⊕ 〈en+1〉)⊗ V ′+

)
⊕
(
V+ ⊗ V ′+

)
and let Z2

+ = V− ⊗ V ′ ⊕ en+1 ⊗ V ′+. Define T : S(Z1
+) → S(Z2

+) to be the partial Fourier
transform with respect to V+ ⊗ V ′+ given by

T (Φ)(X, Y ) =

∫
V+⊗V ′+

Φ(X,W )ψ(〈Y,W 〉) dW

where X ∈ (V− ⊕ 〈en+1〉)⊗ V ′+, Y ∈ V− ⊗ V ′−. Here we identify V+ ⊗ V ′+ with F n2
through

the basis ei ⊗ fj and endow it with the product measure.
Define the realization ω2

ψ on S(Z+
2 ) by

ω2
ψ(g)T (Φ) = T (ω1

ψ(g)Φ), Φ ∈ S(Z+
1 ).

Explicitly, identifying Z2
+ with Mn,2n ⊕Mn,1 and letting Φ′ = Φ1 ⊗ Φ2 ∈ S(Z2

+) where
Φ1 ∈ S(Mn,2n(F )) and Φ2 ∈ S(Mn,1(F )), we have ([MR04, (3.13)–(3.16)])

ω2
ψ(m(u), g′)[Φ1 ⊗ Φ2](X, x) = [Φ1 ⊗ ωψ(g′)Φ2]((u∗)−1Xg′, x) g′ ∈ G′, u ∈ N ′′,(20)

ω2
ψ(u, e′)[Φ1 ⊗ Φ2](E2) = ψ−1

N (u)[Φ1 ⊗ Φ2](E2) u ∈ U,(21)

where E2 = en+1⊗ fn−
∑n

i=1 e−i⊗ f−i (identified with [(0n,−1n), fn]) and ωψ denotes the
Weil representation on S(V ′+). In particular,

(22) ω2
ψ(g, ũ′g′)Φ′(E2) = ψN ′(u

′)ω2
ψ(g, g′)Φ′(E2), u′ ∈ U ′.

Let π′ ∈ Πψ−1
(G′). For Φ′ ∈ S(Z2

+) and W ′ ∈ C(N ′\G′, ψ−1
N ′ ) define

(23) (θ′
ψ
Φ′W

′)(g) =

∫
U ′\G′

ω2
ψ(g, g′)Φ′(E2)W ′(g′) dg′.

Recall that the measure on U ′ is fixed in §1.1. By (22) the integrand is left U ′-invariant.

Proposition 2. For any π′ ∈ Πψ−1
(G′) (not necessarily in Πψ−1

2 (G′)) the integral in (23)

is absolutely convergent and there exists Φ′ and W ′ such that θ′ψΦ′W
′ 6≡ 0. Moreover, if

π′ ∈ Πψ−1

2 (G′) then θ′ψΦ′W
′ ∈ L2(N\G,ψ−1

N ) for any W ′ ∈ W̃ψ−1
(π′).
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Proof. The first part follows from [JS03, Corollary 2.1]. For completeness we provide a
proof. By replacing Φ′ with ω2

ψ(g, e′)Φ′, we can assume that g = e. By Iwasawa decompo-
sition, to show absolute convergence, it suffices to show that the integrand is a Schwartz
function in m′ ∈M ′. (Of course, for this statement the extra modulus function δ−1

P ′ in the
integration formula is immaterial.) By (20)

ω2
ψ(e, m̃′)Φ′(E2) = γ|det(x)|1/2Φ′((0n,−x∗), ∗) for m′ = m′(x) ∈M ′,

where γ is a root of unity and we don’t specify the second argument of Φ′. It follows

directly from (4) that ω2
ψ(e, m̃′)Φ′(E2) ·W ′(m̃′) is a Schwartz function in m′.

It is also clear that θ′ψΦ′W
′ can be made non-zero. Indeed, we can assume that W ′(e′) 6= 0

and let Φ′ be a non-negative function supported in a small neighborhood of E2 such that
Φ′(E2) = 1. Then it is easy to see that {g′ ∈ U ′\G′ : ω2

ψ(e, g′)Φ′(E2) 6= 0} is an arbitrarily

small neighborhood of U ′. Therefore, θ′ψΦ′W
′(e) 6= 0.

Next, we show that θ′ψΦ′ ∈ C(N\G,ψ−1
N ), i.e. that

(θ′
ψ
Φ′W

′)(ng) = ψ−1
N (n)(θ′

ψ
Φ′W

′)(g)

for all n ∈ N . It is enough to check this relation separately for n = m(u), u ∈ N ′′ and
n ∈ U . In the first case by (20) we have

(θ′
ψ
Φ′W

′)(ng) =

∫
U ′\G′

ω2
ψ(m(u)g, g′)Φ′(E2)W ′(g′) dg′

=

∫
U ′\G′

ω2
ψ(g, m̃′(u−1)g′)Φ′(E2)W ′(g′) dg′

=

∫
U ′\G′

ω2
ψ(g, g′)Φ′(E2)W ′(m̃′(u)g′) dg′

= ψN ′(m
′(u))−1

∫
U ′\G′

ω2
ψ(g, g′)Φ′(E2)W ′(g′) dg′

= ψ−1
N (n)(θ′

ψ
Φ′W

′)(g).

The second case follows from (21).

Finally, we show that θ′ψΦ′ ∈ L2(N\G,ψ−1
N ) if π′ ∈ Πψ−1

2 (G′). We write

θ′
ψ
Φ′W

′(g) =

∫
U ′\G′

ω2
ψ(g, g′)Φ′(E2)W ′(g′) dg′

=

∫
N ′\G′

∫
U ′\N ′

ω2
ψ(g, ñ′g′)Φ′(E2)ψ−1

N ′ (n
′) dn′ W ′(g′) dg′.

Thus, it suffices to show that

t 7→ δ(t)−
1
2

∫
T ′

∣∣∫
U ′\N ′

ω2
ψ(t, ñ′t̃′)Φ′(E2)ψ−1

N ′ (n
′) dn′ W ′(t̃′)

∣∣δ′(t′)−1 dt′ ∈ L2(T ).

As before, we use the following result.
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Lemma 6. There exists φ ∈ S(F 2n) such that

(δ(t)δ′(t′))−
1
2 |
∫
U ′\N ′

ω2
ψ(t, ñ′t̃′)Φ′(E2)ψ−1

N ′ (n
′) dn′| = φ(y1, . . . , yn, z1, . . . , zn)

n∏
i=1

|yi|
1
2

where yi = ti/t
′
i, zi = t′i/ti+1.

The Lemma can be proved exactly as Lemma 4. Alternatively, it follows readily from
the latter using Proposition 3 below. As before, using the Lemma and the bounds (4) we
reduce to showing that for any µ > 0 and φ ∈ S(F 2n) we have

t 7→
∫
T ′
φ(y1, . . . , yn, z1, . . . , zn)

n∏
i=1

|α′i(t′)|µ|ti/t′i|
1
2 dt′ ∈ L2(T ).

(We may assume without loss of generality that µ < 1
2
, since α′i(t

′) = ziyi+1 is bounded
by the support of φ.) Alternatively, by a change of variables t′i 7→ ti+1t

′
i (with the usual

convention tn+1 = 1)

(24)

∫
T ′
φ(α1(t)/t′1, α2(t)/t′2, . . . , αn(t)/t′n, t

′
1, . . . , t

′
n)|t′1t2|µ

n∏
i=1

|αi(t)/t′i|
1
2 dt′ ∈ L2(T ).

Observe that for any ϕ ∈ S(F 2) and ν > 0 there exists ϕ′ ∈ S(F ) such that∫
F ∗
ϕ(t, x/t)|x/t|ν dt ≤ ϕ′(x)

for all x ∈ F ∗. It follows that the left-hand side of (24) is bounded by

ϕ′(α1(t), . . . , αn(t))|α1(t)|µ|t2|µ = ϕ′(α1(t), . . . , αn(t))
n∏
i=1

|αi(t)|µ

for some ϕ′ ∈ S(F n). Hence it belongs to L2(T ) as required. �

As before, we obtain the following

Corollary 2. The span (π, V ) of {θ′ψΦ′W ′ : Φ′ ∈ S(Z2
+),W ′ ∈ W̃ψ−1

(π′)} is an irreducible
subspace of L2(N\G,ψ−1

N ). The representations π and π′∨ correspond under the Howe
ψ-duality.

Lemma 7. We have

(25) (θ′ψΦ′W
′)(e) = (π′(f ′)W ′)(e′)

whenever f ′ satisfies

(26)

∫
N ′
f ′(ñ′g′)ψ−1

N ′ (n
′) dn′ =

∫
U ′\N ′

ω2
ψ(e, ñ′g′)Φ′(E2)ψ−1

N ′ (n
′) dn′.
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Proof. The integral on the right-hand side of (26) makes sense by (22). We have

(θ′ψΦ′W
′)(e) =

∫
U ′\G′

ω2
ψ(e, g′)Φ′(E2)W ′(g′) dg′

=

∫
N ′\G′

∫
U ′\N ′

ω2
ψ(e, ñ′g′)Φ′(E2)ψ−1

N ′ (n
′)W ′(g′) dn′ dg′

=

∫
N ′\G′

∫
N ′
f ′(ñ′g′)W ′(ñ′g′) dn′ dg′

as required. �

Corollary 3. The Howe ψ-duality defines a bijection between Πψ
2 (G) and Πψ

2 (G′).

4. Proof of Theorem 1

4.1. A relation between ω1
ψ and ω2

ψ. We have chosen two models (ωiψ,S(Zi
+)), i = 1, 2

for the Weil representation and an intertwining operator Φ 7→ T (Φ) between them.

Proposition 3. When Φ′ = T (Φ),

(27)

∫
U ′\N ′

ω2
ψ(g, ñ′g′)Φ′(E2)ψ−1

N ′ (n
′) dn′ =

∫
R1\N

ω1
ψ(ng, g′)Φ(E1)ψN(n) dn.

Proof. The elements in Z2
+ will be denoted by (A,B) where A is a n× 2n matrix and B is

a vector in V ′+. The elements in Z1
+ will be denoted by (2n+ 1)× n matrices.

Clearly we only need to establish the identity when g and g′ are the identity elements.
By (20), the left-hand side of (27) is∫

N ′′
T (Φ)((0,−u∗), fn)ψ−1

N ′′(u) du

where
ψN ′′(u) = ψ(u1,2 + . . .+ un−1,n).

Writing f−im
′(u) = f−i +

∑i−1
j=1 ai,jf−j then the above integral equals∫

Fn(n−1)/2

T (Φ)(E2 −
n∑
j=1

n∑
i=j+1

ai,je−i ⊗ f−j)ψ(
n−1∑
i=1

ai+1,i) ⊗1≤j<i≤n dai,j,

where as always dai,j is the self-dual Haar measure on F . Applying the Fourier inversion
formula, this becomes∫

Fn(n+1)/2

Φ(
n∑
i=1

ei+1 ⊗ fi +
n∑
i=1

n∑
j=i

bi,jei ⊗ fj)ψ(−
n∑
i=1

bi,i) ⊗1≤i≤j≤n dbi,j.

Let u ∈ N such that the (i, j + 1)−th entry of u−1 is bi,j for i = 1, . . . , n and j = i, . . . , n,
then clearly the above integrand is just Φ(u−1E1)ψN(u). We get the integral equals∫

R1\N
ω1
ψ(u, e′)Φ(E1)ψN(u) du.



A BESSEL IDENTITY FOR THE THETA CORRESPONDENCE 19

This proves the proposition. �

Remark 1. The proposition and its proof carry over verbatim to the archimedean case.

4.2. Adjointness property. We define a paring (·, ·)1 between L2(N\G,ψN) and L2(N\G,ψ−1
N )

by

(W1,W2)1 =

∫
N\G

W1(g)W2(g) dg, W1 ∈ L2(N\G,ψN), W2 ∈ L2(N\G,ψ−1
N ).

Similarly define paring (·, ·)2 between L2(N ′\G′, ψN ′) and L2(N ′\G′, ψ−1
N ′ ).

Proposition 4. Suppose that Φ and Φ′ are related by (27). Let π ' π∨ ∈ Πψ
2 (G) and

π′ ∈ Πψ
2 (G′) correspond under Howe ψ-duality. Then (θψΦW,W

′)2 = (W, θ′ψΦ′W
′)1 for all

W ∈ Wψ(π) and W ′ ∈ W̃ψ−1
(π′∨).

Proof. We have

(θψΦW,W
′)2 =

∫
N ′\G′

∫
R1\G

ω1
ψ(g, g′)Φ(E1)W (g) dg W ′(g′) dg′

=

∫
N ′\G′

∫
N\G

∫
R1\N

ω1
ψ(ng, g′)Φ(E1)ψN(n)W (g) dg W ′(g′) dg′.

On the other hand

(W, θ′
ψ
Φ′W

′)1 =

∫
N\G

W (g)

∫
U ′\G′

ω2
ψ(g, g′)Φ′(E2)W ′(g′) dg′ dg,

which is ∫
N\G

W (g)

∫
N ′\G′

∫
U ′\N ′

ω2
ψ(g, ñ′g′)Φ′(E2)ψ−1

N ′ (n
′) dn′ W ′(g′) dg′ dg.

Applying the relation (27), the integral becomes∫
N\G

W (g)

∫
N ′\G′

∫
R1\N

ω1
ψ(ng, g′)Φ(E1)ψN(n) dn W ′(g′) dg′ dg.

The proposition now follows from Fubini’s Theorem, since we already know the convergence
of ∫

N ′\G′

∫
N\G
|
∫
R1\N

ω1
ψ(ng, g′)Φ(E1)ψN(n) dn||W (g)W ′(g′)| dg dg′

by (15). �

4.3. Bessel distribution identity. We say f and Φ match if (19) is satisfied. Similarly
we say f ′ and Φ′ match if (26) is satisfied.

Corollary 4. Assume π ∈ Πψ
2 (G) and π′ ∈ Πψ

2 (G′) correspond under Howe ψ-duality.
Suppose that Φ and Φ′ are related by (27), and f and f ′ match Φ and Φ′ respectively.
Then

Bπ(f) = Bπ′(f ′∨).
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This follows from Lemma 1 applied to (π1, π̂1, (·, ·)1) = Wψ(π), (π2, π̂2, (·, ·)2) = W̃ψ(π′),

A = θψΦ, Â = θ′ψΦ′ , (`1, ˆ̀
1) = (P , λψ−1

), (`2, ˆ̀
2) = (λ̃ψ, λ̃ψ

−1
) using Lemmas 5, 7 and

Proposition 4.
We are now ready to prove Theorem 1. First, we recall the notion of matching functions

and related concepts.
An N ′′ × N ′′ orbit {n′′1g′′n′′2} of g′′ ∈ GLn is relevant if n′′1g

′′n′′2 = g′′ implies ψN ′′(n
′′
1) =

ψN ′′(n
′′
2). Similarly an R ×N orbit {rgn} of g ∈ G is relevant if rgn = g implies ψR(r) =

ψN(n)−1; an N ′ × N ′ orbit {n′1g′n′2} of g′ ∈ Sp(V ′) is relevant if n′1g
′n′2 = g′ implies

ψN ′(n
′
1) = ψ−1

N ′ (n
′
2).

Let Sl be a complete set of representatives of relevant orbits in GLl. In [MR04, §4], two
injective maps s and t are defined from ∪0≤l<nSl×{±1}∪Sn to G and Sp(V ′) respectively,
so that the images of s and t give complete sets of representatives of relevant orbits in G
and Sp(V ′). For x ∈ ∪0≤l<nSl × {±1} ∪ Sn, define orbital integrals:

Is(x)(f) =

∫
R

∫
N∩s(x)−1Rs(x)\N

f(rs(x)n)ψR(r)ψN(n) dn dr,

Jt(x)(f
′) =

∫
N ′

∫
N ′∩t(x)−1N ′t(x)\N ′

f ′(ñ′1t̃(x)ñ′2)ψ−1
N ′ (n

′
1)ψ−1

N ′ (n
′
2) dn′1 dn

′
2.

Define transfer factors ∆(x) for x ∈ ∪0≤l<nSl × {±1} ∪ Sn as in [MR04, §6]. We say f
and f ′ match if Jt(x)(f

′) = ∆(x)Is(x)(f) for all x ∈ ∪0≤l<nSl × {±1} ∪ Sn.

By [MR04, Proposition 6.1] to any f ∈ S(G) there exists a matching f̃ ∈ S(G′) More

precisely, we can construct f̃ explicitly as follows. First by [ibid., Lemma 5.2] there exists
Φ that relates to f through (19). Next, by [ibid., Lemma 5.6], (see [ibid., (5.5)]) there

exists f̃ ∈ S(G′) such that the relation∫
N ′
f̃(ñ′g′)ψ−1

N ′ (n
′) dn′ =

∫
R1\N

ω1
ψ(n, g′)Φ(E1)ψN(n) dn

holds for all g′ ∈ G′. From this and (27) we see that f̃ and T (Φ) match in the sense of
(26). By Corollary 4 we infer that

Bπ(f) = Bπ′(f̃∨).

On the other hand Bπ′(f ′∨) is a bi-(N ′, ψN ′)-equivariant distribution on S(G′) and there-
fore, it depends only on the orbital integrals of f ′ by [GK75]. Theorem 1 follows.

Remark 2. In [MR04, Theorem 7.1], it is established that at almost all places (the odd
places where ψ is unramified), when f is an element in the Hecke algebra of G, f ′ the
corresponding element in Hecke algebra of G′, the functions f and f ′ match.

Remark 3. If we adjust the definition of orbital integral in [MR04] to:

J ′t(x)(f
′) =

∫
N ′

∫
N ′∩t(x)N ′t(x)−1\N ′

f ′(ñ′1(t̃(x))−1ñ′2)ψN ′(n
′
1)ψN ′(n

′
2) dn′1 dn

′
2,
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(and change the definition of relative trace formula in [MR04] accordingly), then clearly
J ′t(x)(f

′∨) = Jt(x)(f
′). If we redefine matching of functions by the condition J ′t(x)(f

′) =

∆(x)Is(x)(f), then Theorem 1 can be restated as Bπ(f) = Bπ′(f̃) whenever f and f̃ match
under the revised matching condition.

5. Global Bessel distribution identity

In this section, we consider the global counterpart of Theorem 1. Let F be a number
field and A its ring of adeles. We retain the notation V , V ′, Z1

+, Z2
+ from §1.1 and §3;

and denote by G′A the metaplectic cover of Sp(V ′A). (We refer to [JS07] for the precise
definition and standard facts about the metaplectic group over the adeles.) Let ωiψ be the

Weil representation of the metaplectic cover of Sp(VA⊗V ′A) on S(Zi
+,A) defined with respect

to the splitting V ⊗ V ′ = Zi
+ ⊕ Zi

−, i = 1, 2. Define S(GA) to be the space of Schwartz-

Bruhat functions on GA; similarly for S(G′A). We define theta functions θi,φψ (g, g′) on
GA ×G′A by:

θi,φψ (g, g′) =
∑

z∈Zi+,F

ωiψ(g, g′)φ(z), φ ∈ S(Zi
+,A).

Let T be as in §3.2. By Poisson summation formula we have

(28) θ1,φ
ψ = θ

2,T (φ)
ψ

for any φ ∈ S(Z1
+,A). (Cf. the proof of [MR05, Proposition 3.1].)

Let π = ⊗vπv be an irreducible cuspidal representation of GA realized in L2(GF\GA).
We denote by θψ(π) the (possibly zero) representation of G′A generated by the functions

Θφ
ψ[ϕ](g′) =

∫
GF \GA

θ1,φ
ψ (g, g′)ϕ(g) dg, ϕ ∈ π, φ ∈ S(Z1

+,A).

Similarly for an irreducible genuine cuspidal representation π̃ ofG′A realized in L2(G′F\G′A),
we denote by θ′ψ(π̃) the representation of GA generated by functions of the form:

Θ̃φ
ψ[ϕ̃](g) =

∫
G′F \G

′
A

θ2,φ
ψ (g, g′)ϕ̃(g′) dg′, ϕ̃ ∈ π̃, φ ∈ S(Z2

+,A).

For cusp forms ϕ, ϕ̂ of GA let (ϕ, ϕ̂)GF \GA =
∫
GF \GA

ϕ(g)ϕ̂(g) dg. Similarly for G′A. By

(28) we have the adjointness relation

(29) (Θφ
ψ[ϕ], ϕ′)G′F \G′A = (ϕ, Θ̃

T (φ)
ψ [ϕ′])GF \GA .

For any cuspidal automorphic form ϕ on GA define the Whittaker coefficient by

Wψ(ϕ)(g) =

∫
NF \NA

ϕ(ng)ψN(n)−1 dn

and the Bessel period P(ϕ) = Pψ(ϕ) by

P(ϕ)(g) =

∫
RF \RA

ϕ(rg)ψR(r)−1 dr.
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We recall that by unfolding the global zeta integral for G for Re s � 0, if P(ϕ) 6≡ 0 then
Wψ(ϕ) 6≡ 0 [Gin90].

Similarly, the Whittaker coefficient W̃ψ(ϕ′) of an automorphic form ϕ′ on G′A is given
by

W̃ψ(ϕ′)(g′) =

∫
N ′F \N

′
A

ϕ′(ñ′g′)ψ−1
N ′ (n

′) dn′.

We write Wψ(ϕ) for Wψ(ϕ)(e) and similarly for P(ϕ) and W̃ψ(ϕ′).
Furusawa, extending results of Waldspurger for n = 1, obtained the following formulas

which are the global analogues of the results in section 3.

Proposition 5. ([Fur95])

(1) Let ϕ ∈ π, φ = ⊗φv ∈ S(Z1
+,A), ϕ′ = Θφ

ψ[ϕ]. Then W̃ψ(ϕ′) = P(π(f)ϕ) where
f = ⊗fv such that fv and φv are related through (19). (We recall that such f
always exists.)

(2) Let ϕ′ ∈ π′, φ′ = ⊗φ′v ∈ S(Z2
+,A) and ϕ = Θ̃φ′

ψ [ϕ′]. ThenWψ−1
(ϕ) = W̃ψ−1

(π′(f ′)ϕ′)
where f ′ = ⊗f ′v such that f ′v and φ′v are related through (26). (Once again, such f ′

exists.)

In the terminology of [PS79] a ψ-hypercuspidal automorphic form is one for which
Wψ(ϕ) ≡ 0 and a cusp form is ψ-generic if it is orthogonal (in L2(GF\GA)) to all ψ-
hypercuspidal automorphic forms. In other words, ϕ is ψ-generic if (ϕ, ϕ̂)GF \GA = 0 for all
ψ−1-hypercuspidal ϕ̂. We denote by Aψ(G) the space of ψ-generic cusp forms. (In fact,
this space does not depend on ψ.) Define Aψ(G′) similarly. (This time, the dependence
on ψ′ is important.) It is a formal consequence of local uniqueness of Whittaker models
that Aψ(G) and Aψ(G′) are multiplicity-free. (Cf. [PS79].) Let Ξψ be the set of irreducible
cuspidal representations π of GA in Aψ(G) for which θψ(π) is non-zero. Similarly let Ξ′ψ

be the set of irreducible genuine cuspidal representations π′ of G′A in Aψ(G′) such that
θψ−1(π′) 6= 0. From Proposition 5 and the relation (29) we deduce

Corollary 5. (1) Suppose that π ∈ Ξψ. Then θψπ ∈ Ξ′ψ.
(2) Suppose that π′ ∈ Ξ′ψ. Then θ′ψ−1π′ ∈ Ξψ.

Combining Corollary 5 and the results of Jiang-Soudry ([JS07]) we conclude

Proposition 6. θψ defines a bijection between Ξψ and Ξ′ψ whose inverse map is θ′ψ−1.

Moreover, Ξψ is the set of irreducible representations π in Aψ(G) such that L(1
2
, π) 6= 0, or

equivalently, P 6≡ 0 on π, while Ξ′ψ consists of all irreducible representations in Aψ(G′).

Let π ∈ Ξψ with its automorphic realization V in Aψ(G). Then π∨ ∈ Ξψ−1
. Let (π̂, V̂ )

be the automorphic realization of π∨ in Aψ−1
(G). (In fact, π̂ = π and V̂ = V .) Similarly,

let (π′, V ′) be the automorphic realization of π′ ∈ Ξ′ψ in Aψ(G′) and let (π̂′, V̂ ′) be the

automorphic realization of π′∨ in Aψ−1
(G′). Thus, V̂ ′ = {ϕ : ϕ ∈ V ′} where ϕ(g) = ϕ(g).

Suppose that π ∈ Ξψ and π′ = θψ(π). Then by (29) we have θ′ψ(π̂′) = π̂. Let ιπ : π∨ 7→ π̂
and ιπ′ : π̃∨ 7→ π̂′ be the intertwining maps defined by pairings (·, ·)GF \GA and (·, ·)G′F \G′A
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respectively. Define distributions on GA and G′A with respect to π and π′ as follows:

Bπ(f) = B(π,π̂,(·,·)GF \GA )

P,Wψ−1 (f) =Wψ−1 ◦ ιπ(P ◦ π(f)) =
∑
i

P(π(f)ϕi)Wψ(ϕi),

Bπ′(f ′) = B
(π′,π̂′,(·,·)G′

F
\G′A

)

W̃ψ ,W̃ψ−1 (f ′) = W̃ψ−1 ◦ ιπ′(W̃ψ ◦ π′(f ′)) =
∑
i

W̃ψ(π′(f ′)ϕ′i)W̃ψ(ϕ′i)

where ϕi is an admissible orthonormal basis of π, that is, the restricted tensor product of
admissible bases of πv, and similarly for ϕ′i.

Theorem 2. Given f = ⊗fv ∈ S(GA) there exists a matching f ′ = ⊗f ′v ∈ S(G′A) (that is,
f ′v matches fv for all v) such that for any π ∈ Ξψ we have

(30) Bπ(f) = Bπ′(f ′∨)

where π′ = θψ(π).

Proof. We argue as in the proof of Theorem 1. Given f = ⊗fv ∈ S(GA) we construct
f ′ = ⊗f ′v using [MR04] by first constructing φv related to fv and then choosing f ′v related
to T (φv). (In [ibid.] fv is restricted to be compactly supported, but in the archimedean
case the proof works in fact for any fv ∈ S(G(Fv)).) Applying the global analogue of
Lemma 1 we get (30). �

Remark 4. Assuming the validity of the Gelfand-Kazhdan localization principle in the
archimedean case, every bi-(N ′, ψ′)-equivariant distribution on G′A would be determined
by its orbital integrals. Therefore, we would be able to rephrase Theorem 2 by simply
saying that the relation (30) holds for any matching f , f ′.
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