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Abstract. The blow-up of solutions for a parabolic equation with nonlocal exponential nonlin-

earity is studied.

1. Introduction. Consider the equation

∂u

∂t
= ∆u+M

V eu∫
D
V eudx

; u(x, 0) = u0; u|∂D = 0. (1.1)

Here D ⊂ R2 is a bounded domain α < V = V (x) < β is a continuous function on

D where 0 < α ≤ β < ∞. The constant M > 0 plays a significant rule in the global

existence theory for this system, as we shall see below.

Equation (1.1) is a limit of some version of the Keller-Segel system [KS]

ε1
∂ρ

∂t
= ∇ · (−ρ∇w +∇ρ), (1.2)

ε2
∂u

∂t
= ∆u+ ρ, (1.3)

where

1. ρ = ρ(x, t) stands for the density of population of amoebae (or other living cells),

2. w = w(x, t) stands for a chemical (sensitivity) attracting these cells,

3. u(x, t) is the part of w which is produced by the cells themselves,

4. w(x, t) = u(x, t) + η(x),where η is a fixed (in time) distribution of the chemical,

5. the no-flux boundary condition (ρ∇w +∇ρ)·ν|∂D = 0 where ν is the normal to ∂D,

is assumed on (1.2), while the Dirichlet boundary condition u|∂D = 0 is assumed

on (1.3).
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The positive parameters ε1 and ε2 determine the rates of the cell and chemical dynamics,

respectively.

The limit ε2 = 0 is known in the literature and was studied by many authors, see [S],

[BN] and references therein. In this case, equation (1.3) is reduced to a Poisson equation

∆u+ ρ = 0 =⇒ u(x, t) =

∫

D

G(x, y)ρ(y, t)dy. (1.4)

where G = ∆−1 is the Green function associated with the Laplacian and Dirichlet b.c.

The second limit ε1 = 0 is less familiar in the literature. In this case, equation (1.2)

together with the no-flux boundary conditions yield

−ρ∇w +∇ρ ≡ 0 =⇒ ρ(x, t) = M
V (x)eu(x,t)

∫
D
V eu

,

where V = eη and M is the total (conserved) mass of the population

M =

∫

D

ρ(x, t)dx =

∫

D

ρ(x, 0)dx.

Substituting the above in (1.3) (with ε2 = 1) we obtain (1.1).

The system (1.2)–(1.3) can be presented as a generalized gradient system. Let the

functional

F(ρ, u) =
1

2

∫

D

|∇u|2 −
∫

D

ρ(η + u) +

∫

D

ρ ln ρ

be defined on the domain ΛM ×H1
0(D), where

ΛM =

{
ρ ∈ L1(D), ρ ≥ 0;

∫

D

ρ ln ρ <∞,
∫

D

ρ = M

}
.

Then, system (1.2)–(1.3) is rewritten as

ε1
∂ρ

∂t
= ∇ · [ρ∇δρF ] , (1.5)

ε2
∂u

∂t
= −δuF , (1.6)

where δρ (δu) stand for the standard first variational derivative with respect to ρ (u). The

functional F is monotone nonincreasing along the solution. Indeed, using integration by

parts and the boundary conditions for (1.2):

d

dt
F(ρ(·, t), u(·, t)) =

∫

D

δρF
∂ρ

∂t
+

∫

D

δuF
∂u

∂t
(1.7)

= −ε2

∫

D

∣∣∣∣
∂u

∂t

∣∣∣∣
2

− 1

ε1

∫

D

ρ|∇δρF|2 ≤ 0.

Let us revisit the limit ε2 = 0. First, note that

min
u∈H1

0

[
1

2

∫

D

|∇u|2 −
∫

D

ρu

]
= −1

2

∫

D

∫

D

ρ(x)G(x, y)ρ(y)dxdy,

where G as defined in (1.4). Then define

E(ρ) = inf
u∈H1

0

F(ρ, u) ≡
∫

D

ρ ln ρ− 1

2

∫

D

∫

D

ρ(x)G(x, y)ρ(y)dxdy −
∫

D

ρη.
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An immediate observation shows that the system (1.2) with (1.4) and ε2 = 0, ε1 = 1 is

equivalent to
∂ρ

∂t
= ∇ · [ρ∇δρE], (1.8)

while
d

dt
E(ρ(·, t)) = −

∫

D

ρ |∇δρE|2 ≤ 0,

namely, by replacing F in (1.5) and (1.7) by E.

A similar observation holds also in the case ε1 = 0. A first look at (1.7) may suggests

that it is a singular limit, since 1/ε1 appears on the RHS. However, we should expect that,

for ε1 small enough, the density ρ should be close to the minimum of F(·, u), constrained

by the conservation of mass
∫
D
ρ = M , which implies that δρF is close to a constant

λ = λ(t) (which is, in fact, the Lagrange multiplier associated with the mass constraint).

This leads us to define

H(u) = inf
ρ∈ΛM

F(ρ, u).

Next, we observe that the minimum above is obtained at

ρ(x, t) = M
V (x)eu(x,t)

∫
D
V eu

, V (x) = eη,

so

H(u) =
1

2

∫

D

|∇u|2 −M ln

(∫

D

V eudx

)
(1.9)

and the limit ε1 = 0, ε2 = 1 takes the form

∂u

∂t
= −δuH(u), (1.10)

while
d

dt
H(u) = −

∫

D

∣∣∣∣
∂u

∂t

∣∣∣∣
2

(1.11)

that is, by replacing F in (1.6) and (1.7) by H.

2. Global existence and blow-up. It is known that, in the limit ε2 = 0, a global

strong solution exists under reasonable regularity conditions on the data ρ0 = ρ(x, 0),

provided
∫
D
ρ0 = M < 8π. In the case M > 8π and D is starlike, there exist initial data

for which the solution blows up in a finite time T <∞. See [S], [BN].

However, almost nothing has been written on the second limit ε1 = 0 of equation (1.10)

or (1.1). It is easy to obtain local existence by standard theory of parabolic equations,

cf. [LSU]. Global existence for M < 8π is also not difficult due to the Moser-Trudinger

inequality

1

2

∫

D

|∇u|2dx− 8π

∫

D

ln

(∫
D
eu

|D|

)
≥ 0 ∀u ∈ H1

0(D).

For references on this inequality, see [B], [CSW] as well as [T], [ST] and references therein.

The question of blow-up for the case M > 8π is much harder. A partial result in this

direction was obtained in [W1]. I shall review this result below:
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Theorem 1. If M > 8π is not an integer multiple of 8π, then there exists a solution of

(1.1) such that

lim
t→T

∫

D

eu(x,t)dx =∞,

where T ≤ ∞ is the maximal time of existence of the local solution of (1.1).

Proof (sketch). It was proved in [W1] (Lemma 7), using results of [BM] and [L,S] that,

for each bounded D ⊂ R2, V ∈ C1(D) and 8kπ 6= M > 8π, k ∈ N, there exists a constant

C = C(D,M) such that for any solution φ of the stationary problem

∆φ+M
V eφ∫
D
V eφ

= 0 ; φ|∂D = 0,

the inequality

H(φ) > −C

is satisfied. Now, for M > 8π the functional H is unbounded from below (sharpness of

the Moser-Trudinger inequality). Let u0 ∈ H1
0 for which H(u0) < −C. By the monotonity

of H (1.11) we have H(u(·, t)) ≤ H(u0) < −C for any t ∈ [0, T ). On the other hand,

if lim supt→T
∫
D
eu < ∞ then there is a uniform control over the H1 norm of u(·, t) for

t ∈ [0.T ). By the local existence theorem (see [W1]), this is enough to guarantee the

extension of the solution to time T + ε for some ε > 0. This implies that T =∞. Then

H(u(·, T ))−H(u0) = −
∫ T

0

∫

D

|δuH(u(·, t))|2 dxdt

by (1.11), so ∫ ∞

0

∫

D

|δuH(u(·, t)|2 dxdt <∞.

This, together with the assumed bound on the H1 norm of u(, t), is enough to guarantee

the existence of a sequence u(, tn), tn → ∞, which converges to a critical point φ of

H which is a steady state. By lower semicontinuity of H we obtain H(φ) < −C, a

contradiction.

Finally, assume lim inft→T
∫
D
eu(x,t)dx <∞. A similar argument, based on the bound

from above of u(., t) for t ∈ [0, T ) and local existence theorem implies that T = ∞. In

this case one can, again, isolate a subsequence tn → ∞ for which u(·, tn) is uniformly

bounded in H1 and converge weakly to a steady state φ. One can complete the argument

as before.

Another result in [W1] shows a conditional blow-up.

Theorem 2. If the solution of (1.1) blows up in a finite time T < ∞, then there exists

x0 ∈ D and γ ≥ 4π such that the measure

µ = γδx0
+ µ0,

where µ0 is nonatomic, is in the limit set limt→T M V eu(,t)∫
D
V eu(,t) .
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The proof of Theorem 2 is based on a result in [W2], generalizing an elliptic estimate

for the equation ∆u+ f = 0, f ∈ L1 of [BM], into a parabolic one:∫

D

eβu(x,t)dx <
C

4π − β||f(, t)||1
; t > 0

where u(x, t) is a solution to the linear equation

ut = ∆u+ f ; (x, t) ∈ D × R+;u(x, t)|∂D = 0;u(x, 0) = 0; f ∈ L∞
(
R+,L1(D)

)
.

The main argument utilizes this estimate to show that, unless the limit set contains an

atomic measure γδx0
for some x0 ∈ D, there is a uniform control on the Lp norm of

V eu(,t)/
∫
D
V eu(x,t)dx for some p > 1 as t→ T . This, in turn, implies T =∞ due to local

(in time) existence, as in Theorem 1.
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