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Abstract. The blow-up of solutions for a parabolic equation with nonlocal exponential nonlin-
earity is studied.

1. Introduction. Consider the equation
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IR A M— 0) = : D = 0. 1.1

ot ut Jp Verda’ w(,0) = uo; ulo (1.1)
Here D C R? is a bounded domain o < V = V(x) < 3 is a continuous function on
D where 0 < a < 8 < o0. The constant M > 0 plays a significant rule in the global
existence theory for this system, as we shall see below.

Equation (1.1) is a limit of some version of the Keller-Segel system [KS]

o _

15, = V- (=pVw + Vp), (1.2)
u
€25 = Au+ p, (1.3)
where

1. p = p(x,t) stands for the density of population of amoebae (or other living cells),
2. w = w(z,t) stands for a chemical (sensitivity) attracting these cells,
3. u(x,t) is the part of w which is produced by the cells themselves,
4. w(x,t) = u(x,t) + n(z),where n is a fized (in time) distribution of the chemical,
5. the no-flux boundary condition (pVw + Vp)-v|sp = 0 where v is the normal to 9D,

is assumed on (1.2), while the Dirichlet boundary condition u|gp = 0 is assumed
on (1.3).
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The positive parameters €1 and €5 determine the rates of the cell and chemical dynamics,
respectively.

The limit 2 = 0 is known in the literature and was studied by many authors, see [S],
[BN] and references therein. In this case, equation (1.3) is reduced to a Poisson equation

Au+p=0 = u(a:,t)z/DG(a:,y)p(y,t)dy. (1.4)

where G = A~! is the Green function associated with the Laplacian and Dirichlet b.c.
The second limit €; = 0 is less familiar in the literature. In this case, equation (1.2)
together with the no-flux boundary conditions yield

—pVw+Vp=0= p(z,t) =M

where V = ¢ and M is the total (conserved) mass of the population

M= / xtda:—/( 0)da.

Substituting the above in (1.3) (with €2 = 1) we obtain (1.1).
The system (1.2)—(1.3) can be presented as a generalized gradient system. Let the

functional )
=—/ |w|2—/ p(n+u)+/ plnp
2 D D D

be defined on the domain Ay, x H§(D), where

AM{pGLl(D),pZO; /plnp<oo, /pM}
D D

Then, system (1.2)—(1.3) is rewritten as

=V [pVi,F], (1.5)

au

2o
where d, (0,,) stand for the standard first variational derivative with respect to p (u). The
functional F is monotone nonincreasing along the solution. Indeed, using integration by
parts and the boundary conditions for (1.2):

if(( /6}' +/5]-' (1.7)
ou|?

:—5’2/ _
D

ot

Let us revisit the limit €5 = 0. First, note that

ot / vit = [ | =4 [ [ st iptuasas

where G as defined in (1.4). Then define

E(,O):ulélgI F(p, )—/plnp——// )p(y)dady — /Dpn-

ap
Lot
_5uF, (1.6)

1
- —/ p|V3,F|? <0.
D
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An immediate observation shows that the system (1.2) with (1.4) and e2 =0, e; =1 is
equivalent to
dp
5 = V- oV, (1.8)

while
GE6C0) == [ p1vs,EP <0
D
namely, by replacing F in (1.5) and (1.7) by E.

A similar observation holds also in the case 1 = 0. A first look at (1.7) may suggests
that it is a singular limit, since 1/&; appears on the RHS. However, we should expect that,
for 1 small enough, the density p should be close to the minimum of F(-, u), constrained
by the conservation of mass | p P = M, which implies that §,F is close to a constant
A = A(t) (which is, in fact, the Lagrange multiplier associated with the mass constraint).
This leads us to define

H(u) = inf F(p.u).

Next, we observe that the minimum above is obtained at
V(z)eu
JpVer ’

H(u) = %/D |Vu|> — M1n </DVe“dx) (1.9)

and the limit €; = 0, 5 = 1 takes the form

pla,t) = M Vz) =,

SO

ou
%= 6, H (u), (1.10)
while )
d ou

that is, by replacing F in (1.6) and (1.7) by H.

2. Global existence and blow-up. It is known that, in the limit e, = 0, a global

strong solution exists under reasonable regularity conditions on the data py = p(z,0),

provided fD po =M < 8m. In the case M > 8w and D is starlike, there exist initial data
for which the solution blows up in a finite time T < co. See [S], [BN].

However, almost nothing has been written on the second limit £; = 0 of equation (1.10)

r (1.1). It is easy to obtain local existence by standard theory of parabolic equations,

cf. [LSU]. Global existence for M < 8 is also not difficult due to the Moser-Trudinger

inequality
1 2 Ipe" 1
= | |Vul*de —8r | In >0 YueHy(D).
2Jp D D]

For references on this inequality, see [B], [CSW] as well as [T], [ST] and references therein.

The question of blow-up for the case M > 87 is much harder. A partial result in this
direction was obtained in [W1]. I shall review this result below:
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THEOREM 1. If M > 87 is not an integer multiple of 8w, then there exists a solution of
(1.1) such that

lim et dy = oo,
t—=T Jp

where T < oo is the mazimal time of existence of the local solution of (1.1).
Proof (sketch). It was proved in [W1] (Lemma 7), using results of [BM] and [L,S] that,

for each bounded D ¢ R?, V € C*(D) and 8kw # M > 8, k € N, there exists a constant
C = C(D, M) such that for any solution ¢ of the stationary problem

Vet
JpVe?

Ao+ M =0; ¢lap =0,

the inequality
H(p)>-C

is satisfied. Now, for M > 8r the functional H is unbounded from below (sharpness of
the Moser-Trudinger inequality). Let ug € H} for which H(uy) < —C. By the monotonity
of H (1.11) we have H(u(-,t)) < H(up) < —C for any ¢t € [0,7"). On the other hand,
if limsup,_,p [, €* < oo then there is a uniform control over the H; norm of u(-,t) for
t € [0.7). By the local existence theorem (see [W1]), this is enough to guarantee the
extension of the solution to time T' + ¢ for some € > 0. This implies that T" = oco. Then

H(u(-T)) - H(u / /|5 H(u(-, 1)) dudt

/ /|5H ) dadt < oo.

This, together with the assumed bound on the H; norm of u(,t), is enough to guarantee
the existence of a sequence u(,t,), t, — o0, which converges to a critical point ¢ of
H which is a steady state. By lower semicontinuity of H we obtain H(¢) < —C, a
contradiction.

by (1.11), so

Finally, assume liminf, ,p fD e“®t) dy < co. A similar argument, based on the bound
from above of u(.,t) for t € [0,T) and local existence theorem implies that 7' = oo. In
this case one can, again, isolate a subsequence t,, — oo for which u(:,t,) is uniformly
bounded in H'! and converge weakly to a steady state ¢. One can complete the argument
as before.

Another result in [W1] shows a conditional blow-up.

THEOREM 2. If the solution of (1.1) blows up in a finite time T < oo, then there erists
xo € D and v > 47 such that the measure

= Y0z, + po,

Vet(t

where o s nonatomic, is in the limit set lim;_,p MW
J D
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The proof of Theorem 2 is based on a result in [W2], generalizing an elliptic estimate
for the equation Au+ f =0, f € Ly of [BM], into a parabolic one:

C
ﬂu(937t)d .
e r< ————— ;5 t>0
~/D 47T_6Hf(at)”1

where u(z,t) is a solution to the linear equation
up = Au + f; (lL’,t) €D x RJr;u(xat)bD = O,U(x,O) =0; f €Lw (RJr;Ll(D)) :

The main argument utilizes this estimate to show that, unless the limit set contains an
atomic measure yd,, for some xy € D, there is a uniform control on the L, norm of
Vet ) [, Vet dy for some p > 1 as t — T'. This, in turn, implies 7' = oo due to local
(in time) existence, as in Theorem 1.
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