NONLOCAL ELLIPTIC AND PARABOLIC PROBLEMS BANACH CENTER PUBLICATIONS, VOLUME 66 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2004

ON THE EQUATION $u_t = \Delta u + M \exp u / \int \exp u \, dx$ **IN PLANAR DOMAINS**

GERSHON WOLANSKY

Department of Mathematics, Technion, Haifa, Israel E-mail: gershonw@math.technion.ac.il

Abstract. The blow-up of solutions for a parabolic equation with nonlocal exponential nonlinearity is studied.

1. Introduction. Consider the equation

$$\frac{\partial u}{\partial t} = \Delta u + M \frac{V e^u}{\int_D V e^u dx}; \quad u(x,0) = u_0; \quad u|_\partial D = 0.$$
(1.1)

Here $D \subset R^2$ is a bounded domain $\alpha < V = V(x) < \beta$ is a continuous function on D where $0 < \alpha \leq \beta < \infty$. The constant M > 0 plays a significant rule in the global existence theory for this system, as we shall see below.

Equation (1.1) is a limit of some version of the Keller-Segel system [KS]

$$\varepsilon_1 \frac{\partial \rho}{\partial t} = \nabla \cdot (-\rho \nabla w + \nabla \rho), \qquad (1.2)$$

$$\varepsilon_2 \frac{\partial u}{\partial t} = \Delta u + \rho, \tag{1.3}$$

where

- 1. $\rho = \rho(x, t)$ stands for the density of population of amoebae (or other living cells),
- 2. w = w(x, t) stands for a chemical (sensitivity) attracting these cells,
- 3. u(x,t) is the part of w which is produced by the cells themselves,
- 4. $w(x,t) = u(x,t) + \eta(x)$, where η is a *fixed* (in time) distribution of the chemical,
- 5. the no-flux boundary condition $(\rho \nabla w + \nabla \rho) \cdot \nu|_{\partial D} = 0$ where ν is the normal to ∂D , is assumed on (1.2), while the Dirichlet boundary condition $u|_{\partial D} = 0$ is assumed on (1.3).

²⁰⁰⁰ Mathematics Subject Classification: 35Q, 35K60, 35B40

Key words and phrases: nonlinear parabolic equation, blow-up of solutions.

The paper is in final form and no version of it will be published elsewhere.

G. WOLANSKY

The positive parameters ε_1 and ε_2 determine the rates of the cell and chemical dynamics, respectively.

The limit $\varepsilon_2 = 0$ is known in the literature and was studied by many authors, see [S], [BN] and references therein. In this case, equation (1.3) is reduced to a Poisson equation

$$\Delta u + \rho = 0 \implies u(x,t) = \int_D G(x,y)\rho(y,t)dy.$$
(1.4)

where $G = \Delta^{-1}$ is the Green function associated with the Laplacian and Dirichlet b.c.

The second limit $\varepsilon_1 = 0$ is less familiar in the literature. In this case, equation (1.2) together with the no-flux boundary conditions yield

$$-\rho\nabla w + \nabla\rho \equiv 0 \Longrightarrow \rho(x,t) = M \frac{V(x)e^{u(x,t)}}{\int_D Ve^u},$$

where $V = e^{\eta}$ and M is the total (conserved) mass of the population

$$M = \int_D \rho(x, t) dx = \int_D \rho(x, 0) dx.$$

Substituting the above in (1.3) (with $\varepsilon_2 = 1$) we obtain (1.1).

The system (1.2)–(1.3) can be presented as a generalized gradient system. Let the functional

$$\mathcal{F}(\rho, u) = \frac{1}{2} \int_D |\nabla u|^2 - \int_D \rho(\eta + u) + \int_D \rho \ln \rho$$

be defined on the domain $\Lambda_M \times \mathbb{H}^1_0(D)$, where

$$\Lambda_M = \left\{ \rho \in \mathbb{L}_1(D), \ \rho \ge 0; \ \int_D \rho \ln \rho < \infty, \quad \int_D \rho = M \right\}.$$

Then, system (1.2)-(1.3) is rewritten as

$$\varepsilon_1 \frac{\partial \rho}{\partial t} = \nabla \cdot \left[\rho \nabla \delta_\rho \mathcal{F} \right], \qquad (1.5)$$

$$\varepsilon_2 \frac{\partial u}{\partial t} = -\delta_u \mathcal{F},\tag{1.6}$$

where δ_{ρ} (δ_{u}) stand for the standard first variational derivative with respect to ρ (u). The functional \mathcal{F} is monotone nonincreasing along the solution. Indeed, using integration by parts and the boundary conditions for (1.2):

$$\frac{d}{dt}\mathcal{F}(\rho(\cdot,t),u(\cdot,t)) = \int_{D} \delta_{\rho}\mathcal{F}\frac{\partial\rho}{\partial t} + \int_{D} \delta_{u}\mathcal{F}\frac{\partial u}{\partial t}$$

$$= -\varepsilon_{2} \int_{D} \left|\frac{\partial u}{\partial t}\right|^{2} - \frac{1}{\varepsilon_{1}} \int_{D} \rho |\nabla\delta_{\rho}\mathcal{F}|^{2} \le 0.$$
(1.7)

Let us revisit the limit $\varepsilon_2 = 0$. First, note that

$$\min_{u \in \mathbb{H}_0^1} \left[\frac{1}{2} \int_D |\nabla u|^2 - \int_D \rho u \right] = -\frac{1}{2} \int_D \int_D \rho(x) G(x, y) \rho(y) dx dy,$$

where G as defined in (1.4). Then define

$$E(\rho) = \inf_{u \in \mathbb{H}_0^1} \mathcal{F}(\rho, u) \equiv \int_D \rho \ln \rho - \frac{1}{2} \int_D \int_D \rho(x) G(x, y) \rho(y) dx dy - \int_D \rho \eta dx dy$$

An immediate observation shows that the system (1.2) with (1.4) and $\varepsilon_2 = 0$, $\varepsilon_1 = 1$ is equivalent to

$$\frac{\partial \rho}{\partial t} = \nabla \cdot [\rho \nabla \delta_{\rho} E], \qquad (1.8)$$

while

$$\frac{d}{dt}E(\rho(\cdot,t)) = -\int_D \rho \left|\nabla \delta_\rho E\right|^2 \le 0,$$

namely, by replacing \mathcal{F} in (1.5) and (1.7) by E.

A similar observation holds also in the case $\varepsilon_1 = 0$. A first look at (1.7) may suggests that it is a singular limit, since $1/\varepsilon_1$ appears on the RHS. However, we should expect that, for ε_1 small enough, the density ρ should be close to the minimum of $\mathcal{F}(\cdot, u)$, constrained by the conservation of mass $\int_D \rho = M$, which implies that $\delta_\rho \mathcal{F}$ is close to a constant $\lambda = \lambda(t)$ (which is, in fact, the Lagrange multiplier associated with the mass constraint). This leads us to define

$$H(u) = \inf_{\rho \in \Lambda_M} \mathcal{F}(\rho, u).$$

Next, we observe that the minimum above is obtained at

$$\rho(x,t) = M \frac{V(x)e^{u(x,t)}}{\int_D Ve^u}, \qquad V(x) = e^\eta,$$

 \mathbf{SO}

$$H(u) = \frac{1}{2} \int_D |\nabla u|^2 - M \ln\left(\int_D V e^u dx\right)$$
(1.9)

and the limit $\varepsilon_1 = 0$, $\varepsilon_2 = 1$ takes the form

$$\frac{\partial u}{\partial t} = -\delta_u H(u),\tag{1.10}$$

while

$$\frac{d}{dt}H(u) = -\int_{D} \left|\frac{\partial u}{\partial t}\right|^{2}$$
(1.11)

that is, by replacing \mathcal{F} in (1.6) and (1.7) by H.

2. Global existence and blow-up. It is known that, in the limit $\varepsilon_2 = 0$, a global strong solution exists under reasonable regularity conditions on the data $\rho_0 = \rho(x,0)$, provided $\int_D \rho_0 = M < 8\pi$. In the case $M > 8\pi$ and D is starlike, there exist initial data for which the solution blows up in a finite time $T < \infty$. See [S], [BN].

However, almost nothing has been written on the second limit $\varepsilon_1 = 0$ of equation (1.10) or (1.1). It is easy to obtain local existence by standard theory of parabolic equations, cf. [LSU]. Global existence for $M < 8\pi$ is also not difficult due to the *Moser-Trudinger* inequality

$$\frac{1}{2}\int_{D}|\nabla u|^{2}dx - 8\pi\int_{D}\ln\left(\frac{\int_{D}e^{u}}{|D|}\right) \ge 0 \quad \forall u \in \mathbb{H}^{1}_{0}(D).$$

For references on this inequality, see [B], [CSW] as well as [T], [ST] and references therein.

The question of blow-up for the case $M > 8\pi$ is much harder. A partial result in this direction was obtained in [W1]. I shall review this result below:

G. WOLANSKY

THEOREM 1. If $M > 8\pi$ is not an integer multiple of 8π , then there exists a solution of (1.1) such that

$$\lim_{t \to T} \int_D e^{u(x,t)} dx = \infty,$$

where $T \leq \infty$ is the maximal time of existence of the local solution of (1.1).

Proof (sketch). It was proved in [W1] (Lemma 7), using results of [BM] and [L,S] that, for each bounded $D \subset \mathbb{R}^2$, $V \in \mathbb{C}^1(\overline{D})$ and $8k\pi \neq M > 8\pi$, $k \in \mathbb{N}$, there exists a constant C = C(D, M) such that for any solution ϕ of the *stationary* problem

$$\Delta \phi + M \frac{V e^{\phi}}{\int_D V e^{\phi}} = 0 ; \quad \phi|_{\partial D} = 0,$$

the inequality

 $H(\phi) > -C$

is satisfied. Now, for $M > 8\pi$ the functional H is unbounded from below (sharpness of the Moser-Trudinger inequality). Let $u_0 \in \mathbb{H}^1_0$ for which $H(u_0) < -C$. By the monotonity of H (1.11) we have $H(u(\cdot,t)) \leq H(u_0) < -C$ for any $t \in [0,T)$. On the other hand, if $\limsup_{t\to T} \int_D e^u < \infty$ then there is a uniform control over the \mathbb{H}_1 norm of $u(\cdot,t)$ for $t \in [0,T)$. By the local existence theorem (see [W1]), this is enough to guarantee the extension of the solution to time $T + \varepsilon$ for some $\varepsilon > 0$. This implies that $T = \infty$. Then

$$H(u(\cdot,T)) - H(u_0) = -\int_0^T \int_D |\delta_u H(u(\cdot,t))|^2 \, dx dt$$

by (1.11), so

$$\int_0^\infty \int_D \left| \delta_u H(u(\cdot, t)) \right|^2 dx dt < \infty.$$

This, together with the assumed bound on the \mathbb{H}_1 norm of u(t), is enough to guarantee the existence of a sequence $u(t_n)$, $t_n \to \infty$, which converges to a critical point ϕ of H which is a steady state. By lower semicontinuity of H we obtain $H(\phi) < -C$, a contradiction.

Finally, assume $\liminf_{t\to T} \int_D e^{u(x,t)} dx < \infty$. A similar argument, based on the bound from above of u(.,t) for $t \in [0,T)$ and local existence theorem implies that $T = \infty$. In this case one can, again, isolate a subsequence $t_n \to \infty$ for which $u(\cdot, t_n)$ is uniformly bounded in \mathbb{H}^1 and converge weakly to a steady state ϕ . One can complete the argument as before.

Another result in [W1] shows a *conditional* blow-up.

THEOREM 2. If the solution of (1.1) blows up in a finite time $T < \infty$, then there exists $x_0 \in D$ and $\gamma \geq 4\pi$ such that the measure

$$\mu = \gamma \delta_{x_0} + \mu_0,$$

where μ_0 is nonatomic, is in the limit set $\lim_{t\to T} M \frac{Ve^{u(t)}}{\int_{\Gamma} Ve^{u(t)}}$.

The proof of Theorem 2 is based on a result in [W2], generalizing an elliptic estimate for the equation $\Delta u + f = 0$, $f \in \mathbb{L}_1$ of [BM], into a parabolic one:

$$\int_{D} e^{\beta u(x,t)} dx < \frac{C}{4\pi - \beta ||f(,t)||_{1}} \quad ; \quad t > 0$$

where u(x, t) is a solution to the *linear* equation

$$u_t = \Delta u + f; (x, t) \in D \times \mathbb{R}^+; u(x, t)|_{\partial D} = 0; u(x, 0) = 0; \ f \in \mathbb{L}_{\infty} \left(\mathbb{R}^+, \mathbb{L}_1(D) \right)$$

The main argument utilizes this estimate to show that, unless the limit set contains an atomic measure $\gamma \delta_{x_0}$ for some $x_0 \in D$, there is a uniform control on the \mathbb{L}_p norm of $Ve^{u(x,t)} / \int_D Ve^{u(x,t)} dx$ for some p > 1 as $t \to T$. This, in turn, implies $T = \infty$ due to local (in time) existence, as in Theorem 1.

References

- W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. Math. 128 (1993), 213–242.
- [2] H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u = V(x)e^u$ in two dimensions, Comm. P.D.E 16 (1991), 1223–1253.
- P. Biler and T. Nadzieja, Nonlocal parabolic problems in statistical mechanics, Nonlinear Analysis Th., Meth. Appl. 30 (1997), 5343–5350.
- [4] E. F. Keller and L. A. Segel, Travelling bands for chemotactic bacteria, a theoretical analysis, J. Theor. Biol., 80 (1971), 235–248.
- [5] M. Chipot, I. Shafrir and G. Wolansky, On the solutions of Liouville systems, J. Diff. Eq. 140 (1997), 59-105.
- [6] O. A. Ladyzenskaja, V. A. Solonnikov and N.N. Ural'ceva, *Linear and Quasi-Linear Equa*tions of Parabolic Type, Trans. of Math. Monographs, 23, AMS, 1968.
- [7] Y. Y. Li and I. Shafrir, Blow up analysis for solutions of $-\Delta u = Ve^u$ in dimension two, Indiana Univ. Math. J. 43 (1994), 1255–1270.
- [8] T. Suzuki and T. Senba, Applied Analysis, Mathematical Methods in Applied Science, World Scientific.
- M. Struwe and G. Tarantello, On multivortex solutions in the Chern-Simons gauge theory, Boll. UMI 8 1-B (1998), 109–121.
- [10] G. Tarantello, Multiple condensates solutions for the Chern-Simons-Higgs theory, J. Math. Phys. 37, 8 (1996), 3769-3796.
- G. Wolansky, A critical parabolic estimate and application to nonlocal equations arising in chemotaxis, Applicable Analysis 66 (1997), 291–321.
- [12] G. Wolansky, A concentration theorem for the heat equation, Monatsh. Math. 132 (2001), 255–261.