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1. Introduction

The present chapter is devoted to the Cahn–Hilliard equation [16,15]:

(1)ut = ∇ · M(u)∇[
f (u) − ε2�u

]
, (x, t) ∈ Ω × R

+,

(2)n · ∇u = n · M(u)∇[
f (u) − ε2�u

] = 0, (x, t) ∈ ∂Ω × R
+,

(3)u(x, 0) = u0(x), x ∈ Ω.

Here 0 < ε2 � 1 is a “coefficient of gradient energy”, M = M(u) is a “mobility” coeffi-
cient, and f = f (u) is a “homogeneous free energy”. The equation was initially developed
to describe phase separation is a two component system, with u = u(x, t) representing the
concentration of one of the two components. Typically, the domain Ω is assumed to be a
bounded domain with a “sufficiently smooth” boundary, ∂Ω , with n in (2) representing the
unit exterior normal to ∂Ω . It is reasonable to consider evolution for times t > 0, or on
some finite time interval 0 < t < T < ∞.

Concentration should be understood as referring either to volume fraction or to mass
fraction, depending on the physical system under investigation. By volume fraction we
mean the volume fraction per unit volume of say component “A”, in a system containing
two components which we shall denote by “A” and “B”. The meaning of mass fraction
is analogous. Thus the Cahn–Hilliard equation constitutes a continuous, as opposed to a
discrete or lattice description, of the material undergoing phase separation. Such a descrip-
tion is appropriate under many but not all circumstances. Note that the definition of u(x, t)

implies that u(x, t) should satisfy 0 � u(x, t) � 1. Moreover, if u(x, t), the concentration
of component A, is known, then the concentration of the second component is given by
1−u and is hence also known; thus the evolution of the composition of the two component
system is being predicted by a single scalar Cahn–Hilliard equation.

In the context of the Cahn–Hilliard equation, the two components could refer, for ex-
ample, to a system with two metallic components, or two polymer components, or say,
two glassy components. Frequently in materials science literature, concentration is given
in terms of mole fraction or equivalently number fraction, rather than in terms of volume
fraction or mass fraction. A mole refers to 6.02252 × 1023 molecules (Avogadro’s number
of molecules), and the mole fraction of component A refers to the number of A molecules
per mole of the two component system, locally evaluated. Mole fraction of number frac-
tion are equivalent to volume fraction if the molar volume (the volume occupied by one
mole) is independent of composition, which is rarely strictly correct [15]. For example, in
a two component polymer systems when many of the polymers are long, the configuration
of the polymers, i.e. whether they are “stretched out” or “rolled up”, typically depends on
composition, which in turn influences the molar volume. Notice also that often temperature
does not appear explicitly in the Cahn–Hilliard equation, since the model is based on the
assumption that the temperature is constant; such an assumption requires careful tempera-
ture control and is also rarely strictly fulfilled in reality. The model also assumes isotropy
of the system, which can also only be approximately correct for metallic systems [5,77,
87], for which the equations were designed, which have an inherent crystalline structure
unless they are in a liquid phase. Nevertheless, the Cahn–Hilliard equation has been seen to
contain many of the dominant paradigms for phase separation dynamics, and as such, has
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played, and continues to play, an important role in understanding the evolution of phase
separation.

Why does the Cahn–Hilliard equation appear in so many different contexts, and what be-
havior is predicted by the Cahn–Hilliard equation which is common to all these systems?
Off-hand, what is being modeled with the Cahn–Hilliard equation is phase separation, in
other words, the segregation of the system into spatial domains predominated by one of
the components, in the presence of a mass constraint, and what one wishes to accomplish
here is to model the dynamics in a sufficiently accurate fashion so that many of the various
features of the resultant pattern formation evolution that one sees in nature during phase
separation can be explained and predicted. In materials science this pattern formation is
referred to as the microstructure of the material, and the microstructure is highly influen-
tial in determining many of the properties of the material, such as strength, hardness, and
conductivity. The Cahn–Hilliard model is rather broad ranged in its evolutionary scope; it
can serve as a good model for many systems during early times, it can give a reasonable
qualitative description for these systems during intermediary times, and it can serve as a
good model for even more systems at late times. Often, the late time evolution is so slow
that the pattern formation or microstructure becomes effectively frozen into the system
over time scales of interest, and hence it is the long time behavior of the system which is
seen in practice.

The Cahn–Hilliard equation also appears in modeling many other phenomena. These
include the evolution of two components of intergalactic material [80], the dynamics of
two populations [19], the biomathematical modeling of a bacterial film [46], and certain
thin film problems [69,79]. We apologies to the reader that most of the details pertaining to
the modeling of these phenomena are outside the scope of the present survey. Nevertheless,
we invite the interested reader to have a look at the forthcoming book by the author of
this survey, entitled From Backwards Diffusion to Surface Diffusion: the Cahn–Hilliard
Equation [65], where these and other details will be treated in greater depth.

We hope that this survey will clarify for the reader the notions of backwards diffusion
and surface diffusion and their connection with the Cahn–Hilliard equation, and will con-
vey something of the nature of the physical phenomena which accompany phase separation
and how the Cahn–Hilliard equation manages to capture these features.

2. Backwards diffusion and regularization

Let us consider a simple variant of the Cahn–Hilliard equation in which f (u) = −u + u3

and M(u) = M0, where M0 > 0 is constant. Let t ∈ (0, T ), 0 < T < ∞, and Ω = (0, L).
In most applications, Ω ∈ R

n with n = 2 or n = 3 is most physically relevant. However,
let us focus temporarily on the n = 1 case for simplicity. Thus,

(4)

⎧
⎪⎨

⎪⎩

ut = M0
[−u + u3 − ε2uxx

]
xx

, (x, t) ∈ ΩT ,

ux = M0
[−u + u3 − ε2uxx

]
x

= 0, (x, t) ∈ ∂ΩT ,

u(x, 0) = u0(x), x ∈ Ω,
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where ΩT = (0, T ) × Ω and ∂ΩT = {0, L} × (0, T ). Note that u(x, t) = ū constitutes
a steady state of (4), where ū is an arbitrary constant; however if u(x, t) is to represent
concentration, clearly one must assume that 0 � ū � 1.

Let us now suppose that u0(x) = ū+ ũ0(x), where ũ0(x) represents a small perturbation
from spatial uniformity. Setting u(x, t) = ū + ũ(x, t), (4) yields that

(5)

⎧
⎪⎨

⎪⎩

ũt = M0
[−ũ + [ū + ũ]3 − ε2ũxx

]
xx

, (x, t) ∈ ΩT ,

ũx = M0
[−ũ + [ū + ũ]3 − ε2ũxx

]
x

= 0, (x, t) ∈ ∂ΩT ,

ũ(x, 0) = ũ0(x) := u0(x) − ū, x ∈ Ω.

Assuming (5) to be well-posed and ũ(x, t) to be small, we neglect terms which are nonlin-
ear in ũ(x, t) and obtain to leading order the linearized problem

(6)

⎧
⎪⎨

⎪⎩

ũt = M0
[−(

1 − 3ū2
)
ũ − ε2ũxx

]
xx

, (x, t) ∈ ΩT ,

ũx = M0
[−(

1 − 3ū2
)
ũ − ε2ũxx

]
x

= 0, (x, t) ∈ ∂ΩT ,

ũ(x, 0) = ũ0(x), x ∈ Ω.

We recall that we have assumed earlier that 0 < ε2 � 1. Suppose that we optimistically
neglect terms in the system (6) which contain a factor of ε2. This yields

(7)

⎧
⎪⎨

⎪⎩

ũt = −M0(1 − 3ū2)ũxx, (x, t) ∈ ΩT ,

ũx = −M0(1 − 3ū2)ũx = 0, (x, t) ∈ ∂ΩT ,

ũ(x, 0) = ũ0(x), x ∈ Ω.

If we stop and consider for a moment (7), we can see that for 3ū2−1 > 0, it is equivalent
to the classical diffusion equation with Neumann boundary conditions

(8)

⎧
⎨

⎩

ũt = Dũxx, (x, t) ∈ ΩT ,

ũx = 0, (x, t) ∈ ∂ΩT ,

ũ(x, 0) = ũ0(x), x ∈ Ω,

whose solutions decay to 1
L

∫ L

0 ũ0(x) dx. For 3ū2 − 1 > 0, it is equivalent to

(9)

⎧
⎨

⎩

ũt = −Dũxx, (x, t) ∈ ΩT ,

ũx = 0, (x, t) ∈ ∂ΩT ,

ũ(x, 0) = ũ0(x), x ∈ Ω.

Now (9) is precisely the backwards diffusion equation, which can be obtained from the
classical diffusion equation by redefining time t → −t so that time will “run backwards.”
The problem (9) is notoriously ill-posed as can be verified by noting that for ũ0 ∈ L2(Ω),
it possesses the formal separation of variables solution

(10)ũ(x, t) = A0

2
+

∞∑

n=1

Ane
n2π2

L2 t
cos(nπx/L),

where the coefficients Ai , i = 0, 1, 2, . . . , correspond to the Fourier coefficients of the
initial conditions,

(11)ũ(x, 0) = ũ0(x) = A0

2
+

∞∑

n=1

An cos(nπx/L).
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Its amplitude grows without bound

(12)
∥∥ũ(x, t)

∥∥2
L2[0,L] = A2

0

2
+

∞∑

n=1

A2
ne

2n2π2

L2 t ;

even for initial data based on a single mode, ũ0(x) = Ak cos(kπx/L),

(13)
∥∥ũ(x, t)

∥∥2
L2[0,L] = A2

ke
2k2π2

L2 t
.

This clearly makes little physical sense in terms of a model for phase separation, although
in other contexts, such as image processing [17], it has been successfully implemented. In
particular, we see that the solution, u(x, t) = ū + ũ(x, t) does not remain bounded within
the interval [0, 1] over time.

Thus both problems, (8) and (9), make little physical sense as models for phase separa-
tion. Hence, the higher order terms proportional to ε2 are truly necessary in the physical
model, and cannot be made light of easily. Seemingly this would provide a compelling rea-
son to include such regularizing terms, but in fact regularizing terms were already added
much before the dynamics for phase separation came under consideration, when equilib-
rium considerations lead to the search for a free energy with “phase separated” steady states
possessing certain regularity and uniqueness properties. This reflects the independent sci-
entific contribution of Gibbs (1893) [35] and van der Waals (1973) [81].

The reader should have no difficulty in ascertaining that (6), where the regularizing terms
have been included, can be formulated as a well-posed problem, and it is fairly straightfor-
ward to verify that (5) and (4) can be carefully formulated as well-posed problems as well.
However, before discussing existence, uniqueness, and well-posedness, we first briefly con-
sider what are the physical phenomena one should like to model with the Cahn–Hilliard
equation, and which are the most important variants of the Cahn–Hilliard equation which
one should like to consider.

3. The Cahn–Hilliard equation and phase separation

We now outline what are the physical features and phenomena which one should like to
be described by the Cahn–Hilliard equation. The process of phase separation in two com-
ponent systems is accompanied by pattern formation and evolution. A typical scenario we
should like to model is that of quick quenching. Let Ω ⊂ R

3 initially contain two compo-
nents which are roughly uniformly distributed, so that u(x, 0) ≈ u0(x) ≡ ū. We should
suppose that ū ∈ [0, 1] if u(x, t) is to represent concentration. If there is no flux of material
into or out of Ω , then the total amount of each component should be conserved,

(14)
1

|Ω|
∫

Ω

u(x, t) dx = ū, 0 � t � T .

Let the initial temperature be given by Θ0, and let the temperature of the system be now
rapidly lowered (quick quenched) to some new temperature, Θ1 � Θ0. In two component
metallic alloy systems, the average thermal conductivity is high, and the temperature of the
system will equilibrate rapidly to the new temperature. With this in mind, the assumption
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Fig. 1. A typical phase diagram. Here (ū,Θ0) lies above the binodal curve in the stable region, (ū,Θ1) lies in
the “metastable region” which lies between the spinodal curve and the binodal curve, and (ū,Θ2) lies below the

spinodal curve.

is made that the temperature equilibrates immediately to lower temperature, Θ1. The equi-
libration process can be modeled by coupling the Cahn–Hilliard equation with an energy
balance equation. This augmented system is known as a conserved phase field model [12].

The dynamics which appears in the system Ω in the wake of quick quenching can be
roughly explained with the help of phase diagrams as developed by Gibbs [35] within the
framework of classical thermodynamics. In the present context, this implies that whether or
not phase separation is predicted, as well as the nature of the phase separation which can be
expected, are determined by the location of (ū,Θ0) and (ū,Θ1) within the phase diagram.
While phase diagrams of varying levels of complexity can occur, a simplest nontrivial level
of phase diagram which can describe phase separation is portrayed in Figure 1.

In the phase diagram, there are two curves which should be noted. One is an upper curve,
known as the binodal or the coexistence curve, and other is a lower curve, known as the
spinodal. The two curves intersect at point, (ūcrit,Θcrit), known as the critical point. If both
(ū,Θ0) and (ū,Θ1) lie above the binodal, no phase separation is expected to occur and the
system is expected to persist in its initially uniform state, u(x, t) ≡ ū. Hence the region
above the binodal is known as the stable or one-phase region. For phase separation to
occur, the initial state (ū,Θ0) should lie above both the binodal and spinodal, and the final
state (ū,Θ1) should lie somewhere below the binodal, either above or below the spinodal.

If (ū,Θ1) lies below the spinodal curve and ū 
= ūcrit, then phase separation is predicted
to onset via spinodal decomposition. During the onset of spinodal decomposition, the sys-
tem is distinguished by a certain “fogginess” reflecting the simultaneous growth of pertur-
bations with many different wavelengths. Spinodal decomposition is fairly well described
by the Cahn–Hilliard equation. If (ū,Θ1) lies below the binodal but above the spinodal,
phase separation can be expected to occur by nucleation and growth. During this process,
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phase separation occurs via the appearance or nucleation of localized perturbations in the
uniform state ū which persist and grow if they are sufficiently large. Though we mention
the nucleation and growth process, it is not well modeled by the Cahn–Hilliard equation,
and alternative approaches have been developed for purpose such as the Lifshitz–Slyozov
theory of Oswald ripening [49] and its extensions [42,4].

We caution the reader that if (ū,Θ0) or (ū,Θ1) are too close to (ūcrit,Θcrit), then the
above descriptions are inappropriate, since critical phenomena [23], such as critical slow-
ing down, will accompany the phase separation. Such effects are characteristic of second
order phase transitions, as opposed to our earlier description, which was appropriate for
first order phase transitions. Arguably Θ1 should be taken not too far from Θcrit, other-
wise inertial and higher order effects may become important; these effects would render
the Cahn–Hilliard model inaccurate, and make it difficult to control the phase separation
process and the resultant microstructure. What distinguishes a first order phase transition
from a second or higher order phase transition is the degree of continuity or regularity of
the system as the system crosses from the stable regime above the binodal into the unstable
regime which lies below it, see e.g. [50].

Whether phase separation occurs via spinodal decomposition or via nucleation and
growth, eventually the system saturates into well-defined spatial domains in which one
of the two components dominates, so that u ≈ uA or by u ≈ uB , where uA and uB denote
the binodal or limiting miscibility gap concentrations when Θ = Θ1. See Figure 1. The
average size of these spatial domains increases over time, as larger domains grow at the
expense of smaller domains. This process is called coarsening, and the dynamics of the
system may now be characterized by the motion of the boundaries or interfaces between
these various domains. Because of mass balance, (14), the relative volume or area of the
domains where u ≈ uA and u ≈ uB remains unchanged, but the overall amount of “do-
main interface” decreases as some limiting configuration is seemingly approached. While
nucleation and growth is somewhat of a weak spot for the Cahn–Hilliard theory, the Cahn–
Hilliard equation can give some reasonable description of the coarsening process, even if
the initial stages of the phase separations were dominated by nucleation and growth.

Let us now consider two important cases of the Cahn–Hilliard equation formulation
given in (1)–(3), to which we shall refer to later repeatedly.

4. Two prototype formulations

Perhaps the easiest formulation to consider is that given in (4) which was discussed in
Section 2. We shall refer to this case as the constant mobility-quartic polynomial case, or
more briefly, the constant mobility Cahn–Hilliard equation, and it is summarized below.

4.1. The constant mobility – quartic polynomial case

Let

(15)M(u) = M0 > 0, where M0 is a constant, and f (u) = −u + u3.
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It follows from (15) that

(16)f (u) = F ′(u), F (u) = 1

4

(
u2 − 1

)2
.

Within this framework, the Cahn–Hilliard equation is given by

(17)

{
ut = M0�(−u + u3 − ε2�u), (x, t) ∈ Ω × (0, T ),

n · ∇u = n · ∇�u = 0, (x, t) ∈ ∂Ω × (0, T ),

in conjunction with appropriate initial conditions. The value of M0 may be set to unity by
rescaling time, but we maintain M0 in the formulation since it is frequently maintained in
the literature, [62]. Note that (17) is invariant under the transformation u → −u, because u

in (17) represents the difference between the two concentrations, u ≡ uA −uB = 2uA −1.
Thus, in terms of the physical interpretation, u(x, t) should assume values in the interval
[−1, 1].

The analysis and treatment of this case is relatively easy since (17) constitutes a fourth
order semilinear parabolic equation, whose treatment is similar to that of second semilinear
parabolic equations such as the reaction diffusion equation,

(18)ut = ε2�u − f (u),

which arises in a wide variety of applications, from populations genetics to tiger spots,
[56,57]. Nevertheless, one of the mainstays in the treatment of second order equations, the
maximum principle, does not carry over easily into the fourth order setting [53]. An exis-
tence theory can be given, for example, in terms of Galerkin approximations [78] which
can also be used to construct finite element approximations that can be implemented nu-
merically. From numerical calculations and analytical consideration, it can be seen that
for a sensible choice of initial conditions, (17) gives a reasonable description of spinodal
decomposition and of coarsening.

An unfortunate feature of the constant mobility Cahn–Hilliard variant (17) is that its
solutions need not remain bounded between −1 and 1, even if the initial data lies in this in-
terval. This drawback can be avoided by employing a formulation, written in terms of one
of the concentrations, in which the mobility is taken to degenerate when u = 0 and u = 1,
and the free energy is taken to be well behaved, as was demonstrated in one space dimen-
sion by Jingxue [44]. Such a formulation does not occur so naturally in the context of phase
separation, but is does occur naturally in other contexts, such as in structure formation in
biofilms [46]. In the context of phase separation, it is natural in including a degenerate
mobility to also include logarithmic terms in the free energy. This seemingly less natural
formulation is in fact well-based in terms of the physics; the logarithmic terms reflect
entropy contributions and the vanishing of the mobilities reflects jump probability consid-
erations [72]. We shall refer to this formulation as the degenerate mobility-logarithmic free
energy case, or for short, the degenerate Cahn–Hilliard equation, and it is explained below.

4.2. The degenerate mobility – logarithmic free energy case

Here we assume that

(19)M(u) = u(1 − u) and f (u) = F ′(u),
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where

(20)F(u) = Θ

2

{
u ln u + (1 − u) ln(1 − u)

} + αu(1 − u),

with Θ > 0, α > 0. In (20), Θ denotes temperature, or more accurately a scaled tempera-
ture. The resultant Cahn–Hilliard formulation is now:

(21)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut = ∇ · M(u)∇
{

Θ

2
ln

[
u

1 − u

]
+ α(1 − 2u) − ε2�u

}
, (x, t) ∈ ΩT ,

n · ∇u = 0, (x, t) ∈ ∂ΩT ,

n · M(u)

{
Θ

2u(1 − u)
∇u − 2α∇u − ε2∇�u

}
= 0, (x, t) ∈ ∂ΩT ,

where ΩT = Ω × (0, T ) and ∂ΩT = ∂Ω × (0, T ), and the equation and boundary
conditions are to be solved in conjunction with appropriate initial data, u0(x). Since u(x, t)

represents here the concentration of one of the two components, u0(x) and u(x, t) should
satisfy 0 � u0(x), u(x, t) � 1.

Formally, referring to (19), (21) can be written more simply as

(22)

⎧
⎨

⎩
ut = Θ

2
�u − ∇ · M(u)∇{

2αu + ε2�u
}
, (x, t) ∈ ΩT ,

n · ∇u = n · M(u)∇�u = 0, (x, t) ∈ ∂ΩT .

Note though that (22) is in fact only meaningful for u ∈ [0, 1], and M(u) has only been
defined on that interval.

The mobility in (19) is referred to as a degenerate mobility, since it is not strictly pos-
itive. A concentration dependent mobility was already considered by Cahn in 1961 [15],
and a degenerate mobility similar to (19) appeared in the work by Hillert in 1956 [40,39] on
a one-dimensional discretely defined precursor of the Cahn–Hilliard equation. The use of
logarithmic terms in the free energy, which arises naturally due to thermodynamic entropy
consideration, also appeared in the papers [40,39] as well as in the 1958 paper of Cahn
and Hilliard [16]. See also the discussions in [26,41]. The problem formulated in (21) con-
stitutes a degenerate fourth order semilinear parabolic problem. Galerkin approximations
can be used to prove existence and to construct finite element schemes by first regularizing
the free energy. The payoff for working with the more complicated formulation is that it
yields more physical results; namely, for (21) and for Ω ⊂ R

n, n ∈ N, if u0 ∈ [0, 1], then
u(x, t) ∈ [0, 1] for t � 0. Details follow in the next section.

However, early on the degenerate and concentration dependent mobilities were replaced
by constant mobilities and logarithmic terms in the free energy were expanded into polyno-
mials, to simplify the analysis and to enable some qualitative understanding of the equation.
In fact, very early analyzes were totally linear. Surprisingly this was not such a bad path
to take since the dominant unstable modes are typically sustained longer that a straight
forward linear analysis would suggest, see Section 6. It seems that nonlinear effects were
first included by de Fontaine in 1967 [22], who did so in the context of early numerical
studies of the Cahn–Hilliard equation.

For detailed derivations of both variants, see [65,66,34]. Physically speaking, it is more
natural to first justify the degenerate Cahn–Hilliard equation with logarithmic free energy
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terms and then to obtain the constant mobility Cahn–Hilliard equation with a polynomial
free energy by making suitable approximations.

5. Existence, uniqueness, and regularity

For the constant mobility Cahn–Hilliard equation with a polynomial free energy, a proof
of existence and uniqueness was given in 1986 by Elliott and Songmu [27], which also
contains a finite element Galerkin approximation scheme. To be more precise, setting

H 2
E(Ω) = {

v ∈ H 2(Ω) | n · ∇v = 0 on ∂Ω
}
,

where n denotes the unit exterior normal to ∂Ω , and ΩT = Ω × (0, T ), it follows from
[27] that

THEOREM 5.1. If Ω is a bounded domain in R
n, n � 2, with a smooth boundary, then

for any initial data u0 ∈ H 2
E(Ω) and T > 0, there exists a unique global solution in

H 4,1(ΩT ).

The proof relies on Picard iteration and on a priori estimates obtained by multiply-
ing (17) by u, f (u)−ε2�u, and �2u. By taking more regular initial data, classical solutions
may also be obtained. Of some physical interest is the estimate obtained by multiplying
(17) by f (u) − ε2�u, namely

(23)F(t) − F(0) = −
∫

ΩT

∣∣∇{
f (u) − ε�u

}∣∣2 dx dt,

where

(24)F(t) =
∫

Ω

{
F(u) + ε2

2
|∇u|2

}
dx.

The quantity f (u) − ε2�u is frequently identified as the chemical potential, μ = μ(x, t).
Of interest also is the estimate obtained by multiplying (17) by φ ≡ 1, namely

(25)
∫

Ω

u(x, t) dx =
∫

Ω

u0(x) dx,

which can be understood as a statement of conservation of mass or conservation of the
mean.

From (23), (25), it also follows that

F(t) − F(0) =
∫

ΩT

〈
f (u) − ε2�u, ut

〉
H 1(Ω),(H 1(Ω))′ dt

(26)= −‖ut‖2
L2(0,T ;H−1(Ω))

,

and hence the Cahn–Hilliard equation is frequently referred to as H−1 gradient flow.
In [58] (see [78] for an extended explanation), using essentially the same estimates and

a Galerkin approximation based on the eigenfunctions of A, where A is the Laplacian with
Neumann boundary conditions, it is proven that
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THEOREM 5.2. For u0(x) ∈ L2(Ω), Ω ⊂ R
n, n � 3, there exists a unique solution,

u(x, t), to the constant mobility Cahn–Hilliard equation, and u(x, t) satisfies

(27)

u ∈ C
([0, T ]; L2(Ω)

) ∩ L2(0, T ; H 1(Ω)
) ∩ L4(0, T ; L4(Ω)

)
, ∀T > 0,

and F(t) decays along orbits. If, moreover, u0(x) ∈ H 2
E(Ω), then

(28)u ∈ C
([0, T ]; H 2

E(Ω)
) ∩ L2(0, T ;D(

A2)), ∀T > 0.

To get (27), (17) needs only to be tested by u. The result (28) follows by testing (17)
by �2u. Uniqueness may be demonstrated by testing with the inverse of A, suitably de-
fined, acting on the difference of two solutions, see the discussion in [11].

Proofs of similar existence results for (17) can also be given within the framework of the
theory of semilinear operators [61]. More specifically, taking L2(Ω) to be the underlying
space, and defining the A1 = ε2� with domain D(A1), the operator A1 can be shown to
be a sectorial operator and existence may be proved by using a variation of constant formu-
lation and results of Henry [38] and Miklavčič [54]. Within the framework of dynamical
systems [61,78], it is easy to prove using (23) that

THEOREM 5.3. As t → ∞, u(x, t) converges to its ω-limit cycle which is compact, con-
nected, and invariant. If the steady states are isolated, then solutions converge to a steady
state.

In a sense, Theorem 5.3 has served as the starting point for many rich studies with re-
gard to the identification of steady states [63,64,36,28,82–86], the existence and properties
of attractors [58,59], the behavior of solutions in the neighborhood of attractors [3], the
stability of steady states [61], and the list given here is admittedly very far from being
complete.

As to existence theories for the degenerate Cahn–Hilliard equation, apparently the first
result in this direction was given in 1992 by Jingxue [44]. The existence theory given there
is for Ω = [0, 1], and it is for the Cahn–Hilliard equation with a degenerate mobility but
with a nonsingular free energy.

THEOREM 5.4. Let M(s) be a Hölder continuous function and f ′(s) be a continuous
function,

M(0) = M(1) = 0, M(s) � 0 for s ∈ (0, 1).

Let u0 ∈ H 3
0 (I ), 0 � u0(x) � 1. Then problem (1)–(3) has a generalized solution u

satisfying 0 � u(t, x) � 1.

Here u ∈ Cα(Ω̄T ), α ∈ (0, 1) is said to be a generalized solution if
(1) D3u ∈ L2

loc(Gu) and
∫
Gu

M(u)(D3u)2 < ∞, where

Gu = {
(x, t) ∈ Ω̄T | M

(
u(x, t)

)
> 0

}
.
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(2) u ∈ L∞(0, T ; H 1(0, 1)), Du is locally Hölder continuous in Gu and Du|Γ ∩Gu = 0
holds in the classical sense, where Γ = {{(0, t), (1, t)} | t ∈ [0, T ]}.

(3) For any φ ∈ C1(Ω̄T ), the following integral equality holds:

−
∫ 1

0
u(x, T )φ(x, T ) dx +

∫ 1

0
u0(x)φ(x, 0) dx +

∫

ΩT

uφt

+
∫

Gu

M(u)
(
ε2D3u − Df (u)

)
Dφ = 0.

The definition of generalized solution given here and the method of proof are in the spirit
of the analysis by Bernis and Friedman [9] of the thin film equation.

For the degenerate Cahn–Hilliard equation with logarithmic free energy, one has the
following results due primarily to Elliott and Garcke [24,47,65],

THEOREM 5.5. Let Ω ⊂ R
n, n ∈ N, where ∂Ω ∈ C1,1 or Ω is convex. Suppose that

u0 ∈ H 1(Ω) and 0 � u0 � 1. Then there exists a pair of functions (u, J) such that

(a) u ∈ L2(0, T ; H 2(Ω)
) ∩ L∞(

0, T ; H 1(Ω)
) ∩ C

([0, T ]; L2(Ω)
)
,

(b) ut ∈ L2(0, T ; (
H 1(Ω)

)′)
,

(29)(c) u(0) = u0 and ∇u · n = 0 on ∂Ω × (0, T ),

(d) 0 � u � 1 a.e. in ΩT := Ω × (0, T ),

(e) J ∈ L2(ΩT , R
n
)

which satisfies ut = −∇ · J in L2(0, T ; (H 1(Ω))′), i.e.,
∫ T

0

〈
ζ(t), ut (t)

〉
H 1,(H 1)′ =

∫

ΩT

J · ∇ζ

for all ζ ∈ L2(0, T ; H 1(Ω)) and

J = −M(u)∇ · (−ε2�u + f (u)
)

in the following weak sense:
∫

ΩT

J · η = −
∫

ΩT

[
ε2�u∇ · (

M(u)η
) + (Mf ′)(u)∇u · η

]

for all η ∈ L2(0, T ; H 1(Ω, R
n)) ∩ L∞(ΩT , R

n) which fulfill η · n = 0 on ∂Ω × (0, T ).
(f) Moreover, letting F(t) be as defined in (24), then for a.e. t1 < t2, t1, t2 ∈ [0, T ],

F(t2) − F(t1) � −
∫ t2

t1

∫

Ω

1

M(u)
|J|2 dx.

The proof here is based on existence results for a regularized equation, where the mo-
bility is given by Mε(u) and the free energy is given by fε(u), and implementation of an
additional estimate obtained by testing the equation with Φε

′(u), where Φε
′′(u) = 1

Mε
,

which yields an entropy like estimate [9], which enables the bounds 0 � u(x, t) � 1 to be
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demonstrated. We note that the “entropy” Φ, such that Φ ′′(u) = 1
M

, had been employed
earlier in the Cahn–Hilliard context in stability studies [60]. For a discussion of uniqueness
and numerical schemes, see [8].

6. Linear stability and spinodal decomposition

In Section 2, linear stability of the spatially uniform state u(x, t) = ū was considered in one
spatial dimension for the constant mobility Cahn–Hilliard equation. Setting Ω = [0, L]
and u(x, t) = ū + ũ(x, t), the following linear stability problem was obtained

(30)

⎧
⎪⎨

⎪⎩

ũt = M0
[−(

1 − 3ū2
)
ũ − ε2ũxx

]
xx

, (x, t) ∈ ΩT ,

ũx = M0
[−(

1 − 3ū2
)
ũ − ε2ũxx

]
x

= 0, (x, t) ∈ ∂ΩT ,

ũ(x, 0) = ũ0(x), x ∈ Ω.

It was shown in Section 2 that when ε is set to zero and the regularizing terms are dropped
from the analysis, then (30) is equivalent to the backwards diffusion equation for ū2 < 1/3,
and it is equivalent to the (forward) diffusion equation for ū2 > 1/3. We have already seen
that when the regularizing terms in ε are included, then (17) is well-posed, so no problems
with ill-posedness are expected here.

It is easy to verify that in the multi-dimensional case, linearization of the constant mo-
bility Cahn–Hilliard equation about the spatially homogeneous steady state, u(x, t) = ū,
yields the linear stability problem,

(31)

⎧
⎪⎨

⎪⎩

ũt = M0
((

1 − 3ū2
)
�ũ − ε�2ũ

)
, (x, t) ∈ ΩT ,

n · ∇ũ = n · ∇�ũ = 0, (x, t) ∈ ∂ΩT ,

ũ0(x, 0) = ũ0(x), x ∈ Ω.

If we wish, we may proceed as in the analysis in [58,78,24] and construct a solution of (31)
based on the eigenfunctions of A, the Laplacian with Neumann boundary conditions. This
yields

ũ(x, t) = A0(0)

2
+

∞∑

k=1

Ak(0)eσ(λk)tΦk(x),

where λk and Φk are the eigenvalues and the eigenfunctions of A, Ak(0) are the coefficients
in the eigenfunction expansion for ũ0(x), and

(32)σ(λk) = ((
1 − 3ū2) − ε2λk

)
λk.

One question of physical interest is number of unstable (or “growing”) modes, in other
words, the number of k ∈ Z+ such that σ(λk) > 0. Another question of physical interest is
the identification of the dominant (or “fastest growing”) mode, in other words, identifying
λk such that σ(λk) is maximal.

In one dimension with Ω = [0, L], λk = (kπ/L)2 and (32) yields the “dispersion
relation”

(33)σ̄ (k) := σ(λk) = k2π2

L2

[
1

4
− ε2k2π2

L2

]
,



The Cahn–Hilliard equation 215

for k ∈ Z+. Examining σ̄ (k) it is easily seen that σ̄ (k) vanishes at k1 = 0 and k2 =
L/(2επ), it is positive for k ∈ (k1, k2), it has a unique critical point (a maximum) at
k3 = L/(2

√
2 επ), and it is negative elsewhere. Even if k3 /∈ Z+, the mode k3 is known

as the fastest growing mode. From (33), it follows that

(34)# growing modes =
⎧
⎨

⎩

[
L

√
1 − 3ū2

επ

]
, |ū| <

1√
3
,

0, otherwise,

where [s] refers to the integer value of s. From (34), it follows that as L increases or as ε

decreases, the number of growing modes increases. Note that if L is sufficiently small or
ε is sufficiently large, then there are no growing modes at all. Thus the parameter range
for linear instability depends on L and ε, as well as on ū. While ε reflects a material
property of the system, L, which reflects the size of the system, can be varied with relative
ease. Since in most systems, the size of the system is very large relative to the size of the
(micro-)structures under consideration, the limit of the parameter range of instability as
ε/L → 0 is of physical relevance. And in this limit, the parameter range for instability is
given by

(35)
−1√

3
� ū � 1√

3
.

The limiting compositions limε/L→0 ū± = ± 1√
3

are known as the spinodal compositions.
What does this have to do with the way the terminology spinodal was used in Section 3?

We note first that the one dimensional analysis may be readily generalized to higher dimen-
sions by recalling that also in higher dimensions one has that λk ∼ k2. Moreover, the analy-
sis may also be readily generalized to treat the degenerate Cahn–Hilliard equation, (21), if
ū is taken to lie strictly in the interval (0, 1) and perturbations are taken sufficiently small.
(For the special cases, ū = 0 or 1, there are no perturbations which conserve the original
mass constraint, and it make some physical sense to impose such a constraint.) For (21),
the spinodal compositions can be easily verified to depend also on temperature, and hence
the parameter range for linear stability can be prescribed in terms of (ū,Θ), as was done
in Section 3.

As time goes on, the importance of the nonlinear terms becomes more and more pro-
nounced. It is the nonlinear effects which keep the amplitude of the solution from becoming
unbounded and which cause the system to saturate near the binodal values, uA and uB . Af-
ter the initial stages of saturation, certain regions, in which uA or uB dominate, grow at
the expense of other regions and coarsening begins. As the nonlinear effects set in, the
differences between the two Cahn–Hilliard variants become more pronounced, as we shall
see shortly. One would expect, however, that the patterning in the phase separation would
be dominated by the fastest growing mode over a period of time roughly proportional
to the inverse of the growth rate of the fastest growing mode. Actually, often it remains
dominant over a considerably longer time interval. This rather surprising result has been
demonstrated for the constant mobility Cahn–Hilliard equation, see [75,51,52].
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7. Comparison with experiment

What can be said with regard to is experimental verification of the Cahn–Hilliard theory?
While qualitative comparison between numerical calculation and experimental data has
been known for years to be reasonable [15,43], more quantitative indicators are clearly
desirable. At the onset on spinodal decomposition, linear theory predicts a dominant grow-
ing mode (see Section 6), and as the system evolves into phase separated domains which
coarsen, the dominant length scale in the system gets larger. Two approaches have been
developed to quantitatively compare the evolution of length scales.

One approach is based on the structure function

S(k, t) ≡ ∣∣{u − ū}̂ (k, t)
∣∣2

,

where ū = ū(t) := 1
|Ω|

∫
Ω

u(x, t) dx, and “̂ ” denotes the Fourier transform. If the length
scale characterizing the patterns of the phase separation are much smaller than the length
scales of Ω , edge effects should become negligible. In this case if Ω ⊂ R

2, then

(36)S(k, t) ≈ 1

4π2

∣∣∣∣

∫

R2×R2
f (x̄, t)f (ȳ, t) e−k·(x̄−ȳ) dx̄ dȳ

∣∣∣∣

2

, ∀k ∈ R
2,

where f (s, t) = u(s, t) − ū(t). Structure function analysis can be implemented from the
earliest stages of phase separation and throughout the coarsening regime. Various conjec-
tures and predictions have been made with regard to possible self-similar behavior and
scaling laws for growth of the characteristic length, based in part on analysis of the evolu-
tion of the structure factor, see e.g. [30]. Although there has been no rigorously verification
of these prediction, some rigorous upper bounds on coarsening rates can be given [47,67].

Another approach which has been developed more recently is computational evaluation
of Betti numbers to study the topological changes occurring during phase separation [32].
Betti numbers, βk , k = 0, 1, . . . , are topological invariants which reflect the topological
properties of the structure [45]. The first Betti number, β0 counts of the number of con-
nected components, and the second Betti number, β1 counts of the number of loops (in
two dimensions) or the number of tunnels (in three dimensions). Reasonable qualitative
agreement between theory and experiment [43] has been reported.

8. Long time behavior and limiting motions

It is constructive to be able to describe coarsening, and to obtain an accurate description
of the motion of the interfaces. It turns out that to leading order, the Mullins–Sekerka
problem and motion by surface diffusion give such a description. They both constitute
free boundary problems where in the present context, the free boundaries refer to the inter-
faces between the phases. The constant mobility and the degenerate mobility Cahn–Hilliard
equations differ in their behavior during coarsening stages. More specifically, the behavior
of the constant mobility Cahn–Hilliard equation during coarsening can be described by
the Mullins–Sekerka problem, and the behavior for the degenerate mobility Cahn–Hilliard
equation is approximated by surface diffusion if Θ = O(ε1/2). It is of interest to note
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that the Mullins–Sekerka problem and motion by surface diffusion appeared in various
other problems, especially in materials science [55,6], long before their connection with
the Cahn–Hilliard equation became known.

How does one pass from the Cahn–Hilliard equation which describes the evolution of
the concentration at all points in the system, to a description of the evolution which focuses
on the motion of the interfaces? One such approach is to derive limiting motions by uti-
lizing certain formal asymptotic expansions. Such an approach was developed to describe
limiting motions for the Allen–Cahn equation [74] and for the phase field equations [13],
and could be generalized to the Cahn–Hilliard context by Pego [71] for the case of constant
mobility and by Cahn, Elliott and Novick-Cohen [14] in the case of degenerate mobility.
As to the justification of the formal asymptotic analysis, under appropriate assumptions
the passage from the Cahn–Hilliard equation to the Mullins–Sekerka problem can be made
rigorous [1,2,18]. The passage from the degenerate Cahn–Hilliard equation to motion by
surface diffusion has yet to be rigorously justified, however numerical computations indi-
cate that the limiting motion has been correctly identified [8].

Since during coarsening the system has already saturated into domains dominated by
one of the two binodal concentrations, we can envision the domain Ω during coarsening as
being partitioned by N interfaces, Γi , i = 1, . . . , N , and the description of the evolution
of the system can be given in terms of these N partitions.

8.1. The Mullins–Sekerka problem

In the Mullins–Sekerka problem [55], the following laws govern the evolution of the inter-
faces for t ∈ (0, T ), 0 < T < ∞. See Figure 2. Away from the interfaces

(37)�μ = 0, x ∈ Ω\Γ,

and along the interfaces

(38)V = −[n · ∇μ]+−, x ∈ Γ,

and

(39)μ = −κ.

Along ∂Ω , the boundary of Ω ,

(40)n · ∇μ = 0, x ∈ Γ ∩ ∂Ω,

and

(41)Γ ⊥ ∂Ω, x ∈ Γ ∩ ∂Ω.

In (37)–(39), μ = μ(x, t) denotes the chemical potential which in the context of the
formulation of the Cahn–Hilliard equation can be identified as μ = f (u)−ε2�u. Note that
here, in the limiting problem, the concentration u = u(x, t) no longer appears explicitly,
but only via the chemical potential, μ. In (38), V = V (x, t) denotes the normal velocity at
the point x ∈ Γ , and n = n(x, t) denotes an unit exterior normal to one of the components
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Fig. 2. Limiting motion as t → ∞ for Case I: the Mullins–Sekerka problem.

Γi which comprises Γ . The orientations can be chosen arbitrarily for the parameterizations
of the curves Γi , i = 1, . . . , N . The normal velocity V can be defined by V = n · �V where
�V = �V (x, t) is the velocity of the interface at x ∈ Γ . See e.g. Gurtin [37] for background.
One should note that Γ is time dependent in this formulation. In (38), [n · ∇μ]+− denotes
the jump in the normal derivative of μ across the interface at x ∈ Γ . In (39), κ denotes the
mean curvature. For curves in the plane,

κ = 1

R
,

where R is the signed radius of the inscribed circle which is tangent to Γ at x ∈ Γ , and the
sign of the radius is taken here to be positive if the inscribed circle lies on the “exterior” or
“left” side of the curve whose orientation has been fixed. In R

3,

κ = 1

2

(
1

R1
+ 1

R2

)
,

where R1, R2 are the principle radii of curvature. See Gurtin [37] or Finn [29].
Clearly the Mullins–Sekerka problem is a nonlocal problem in that the motion of the

interfaces cannot be ascertained without taking into account what is happening within the
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domains bounded by the interfaces. For existence results for the Mullins–Sekerka problem,
and a discussion of some of its qualitative properties, see for example, [2,18].

8.2. Surface diffusion

For the degenerate Cahn–Hilliard equation, if the scaled temperature Θ is sufficiently small
and if logarithmic terms are included in the free energy, then the long time coarsening
behavior can be formally shown to be governed by surface diffusion. By this we mean that
the evolution of the interfaces Γ = Γ1 ∪ Γ2 ∪ · · · ∪ ΓN is given by

(42)V = −π2

16
�sκ, x ∈ Γ,

(43)n · ∇sκ = 0, x ∈ Γ ∩ ∂Ω,

(44)Γi ⊥ ∂Ω, i = 1, . . . , N, x ∈ Γ ∩ ∂Ω.

The boundary condition (43) is an analogue of the no-flux boundary condition, and the
boundary condition (44) is a geometric analogue of the Neumann boundary condition.

In (42)–(44), V , κ and Γ have the same connotation as in our earlier discussion of the
Mullins–Sekerka problem, and �s denotes the surface Laplacian or Laplace–Beltrami op-
erator, see [31]. Here the motion is geometric in that the motion of the interfaces is deter-
mined by the local geometry of the interfaces themselves. A formal asymptotic derivation
of (42)–(44) is given in [14]. The system (42)–(44) can also be shown to describe the long
time coarsening behavior for the deep quench limit [68].

To gain some intuition into the predicted motion, note that in the plane (see Figure 3)
the system (42)–(44) can be written as

(45)

⎧
⎪⎪⎨

⎪⎪⎩

V = −π2

16
κss, x ∈ Γ,

κs = 0, x ∈ Γ ∩ ∂Ω,

Γi ⊥ ∂Ω, i = 1, . . . , N, x ∈ Γ ∩ ∂Ω.

Here s is an arc-length parameterization of the components; i.e., along Γi , i ∈ {1, . . . , N},

s(p) =
∫ p

p0

√
ẋ2 + ẏ2 dτ,

where {(x(τ ), y(τ )) | p0 � τ � p} is an arbitrary parameterization of Γi and p0 refers to
an arbitrary point on Γi . For (45), local existence can be demonstrated for smooth initial
data, and perturbation of circles can be shown to evolve towards circles while preserving
area [25].

9. Upper bounds for coarsening

In this section we present some rigorous results on upper bounds for coarsening. The first
results given in this direction are by Kohn and Otto [47] in the context of the Cahn–Hilliard
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Fig. 3. Limiting motion as t → ∞ for Case II: motion by surface diffusion.

equation. Their results are for (a) the Cahn–Hilliard equation with constant mobility, (17),
and for (b) the degenerate Cahn–Hilliard equation, (21), where the mobility is taken as (19)
and the temperature, Θ , is set to zero. The Θ = 0 limit problem described in (b) in fact
constitutes a free boundary obstacle problem [10], though solutions for it may be obtained
via limits of solutions of (21) with Θ > 0, for which the existence and regularity results of
Section 5 apply. For simplicity, in [47] periodic boundary conditions are assumed and the
mean mass, ū, is taken to be equal to 1/2. They demonstrate upper bounds for the dominant
length scale during coarsening, of the form ∝ t1/3 for (a), and of the form ∝ t1/4 for (b).
Stated more precisely, they proved that there exist constants Cα such that if L3+α(0) �
1 � E(0) and T � L3+α(0), where E denotes a scaled free energy and L is a (W 1,∞)∗
norm of u, then

1

T

∫ T

0
EθrL−(1−θ)r dt � CαT −r/(3+α),

for all r , θ such that

0 � θ � 1, r < 3 + α, θr > 1 + α, (1 − θ)r < 2,
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where α = 0 for (a) and α = 1 for (b). Their analysis is based on three lemmas which
should hold at long times when the system has sufficiently coarsened. The first of these
lemmas gives a bound of the form 1 � dEL where d is an O(1) constant, the second lemma
gives a differential inequality involving E, L, and their time derivatives, and the third
lemma uses the results of the first two lemmas to obtain upper bounds. Similar analyses
have appeared more recently in various related settings [48,21,70].

While the predictions of Kohn and Otto are quite elegant, various deviations from the
results in [47] have been seen [33,76,7], in particular strong mean mass dependence and
slower than predicted rates. Moreover, the validity of their results requires that sufficiently
large systems must be considered at sufficiently large times, which hinders ready numer-
ical verification. As a partial remedy, the results of Kohn and Otto have been general-
ized in [67], and upper bounds for coarsening have now been given for all temperatures
Θ ∈ (0,Θcrit), where Θcrit denotes the “critical temperature”, and for arbitrary mean
masses, ū ∈ (uA, uB), where uA and uB denote the binodal concentrations. In [67], the
domain Ω ⊂ R

N , N = 1, 2, 3, is taken to be bounded and convex, and the analysis ap-
plies either to the Neumann and no flux boundary conditions given in (22) or to periodic
boundary conditions. Moreover, the upper bounds for the length scale are valid for all
times t > 0, even before coarsening has truly commenced. By giving the upper bounds in
terms of explicit temperature and mean mass dependent coefficients, it becomes clear that
transitional and cross-over behavior may be occur, as has been reported in [33,73]. The
remainder of this section is devoted to explaining some of the assumptions, analysis, and
results of [47,67] in greater depth.

The starting point for the analysis in both [47,67] is the following scaled variant of the
degenerate Cahn–Hilliard equation,

(46)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (1 − u2)∇
[
θ

2
ln

[
1 + u

1 − u

]
− u − �u

]
, (x, t) ∈ ΩT ,

n · ∇u = 0, (x, t) ∈ ∂ΩT ,

n · (
1 − u2)∇

[
θ

2
ln

[
1 + u

1 − u

]
− u − �u

]
= 0, (x, t) ∈ ∂ΩT ,

u(x, 0) = u0(x), x ∈ Ω,

which may be obtained by writing (21) in terms of the variables

(47)u′ = 2u − 1, x′ = (
α1/2/ε

)
x, t ′ = (

α2M0/ε
2)t, θ = Θ/α,

then dropping the primes. In the context of (46), θ = 1 corresponds to the critical tem-
perature. By setting θ = 1 − δ, x′ = (δ/2)1/2, t ′ = (δ2/4)t , and u′ = (3δ)−1/2u in (46),
and letting δ → 0 and dropping the primes, the constant mobility Cahn–Hilliard equation,
(17), with M0 = 1 is obtained. For this reason, case (a) treated in [47] is referred to there
as the “shallow quench” limit. Letting θ → 0 in (46), case (b), which is referred to in [47]
as the “deep quench” limit, is obtained.

Why consider E−λ(t)L1−λ(t), 0 � λ � 1, as a reasonable measure for the dominant
length scale in the system? Since the mean mass, ū = 1

|Ω|
∫
Ω

u(x, t) dx, is time invariant
for (46), it is convenient to define a first length scale, L(t) as

L(t) := sup
ξ∈A

1

|Ω|
∫

Ω

u(x, t) ξ(x) dx,
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where

A :=
{
ξ ∈ W 1,∞

∣∣∣
∫

Ω

ξ dx = 0 and sup
Ω

|∇ξ | = 1

}
.

A second length scale, E−1(t), can be defined based on the free energy, F(t), which was
introduced in (24). In terms of the rescalings (47), we obtain that

(48)E(t) := 1

|Ω|F(t) = 1

2|Ω|
∫

Ω

{
|∇u|2 +

[
∂W

∂u

]2}

|u=u(x,t)

dx,

where

(49)
∂W

∂u
= [(

1 − u2) + θ
{
(1 + u) ln(1 + u) + (1 − u) ln(1 − u)

} + e(θ)
]1/2

.

In (49), e(θ) is determined by requiring that ∂W
∂u

= 0 at u = u±, where u± denote here the
two unique minima of ∂W

∂u
, such that u+ = −u− > 0. A straightforward calculation yields

that

(50)θ = 2u±
ln(1 + u±) − ln(1 − u±)

=
[ ∞∑

k=0

1

2k + 1
u2k±

]−1

,

and hence, in particular, u± = u±(θ), as one would expect. That E−1(t) acts as a length
scale measuring the amount of perimeter during coarsening can be seen by noting that (48)
implies that

(51)E(t) � 1

|Ω|
∫

Ω

∣∣∇W(u)
∣∣ dx.

During the later stages of coarsening when the system is approximately partitioned into
regions in which u = u+ and in which u = u−, the inequality in (51) can be expected to
be closely approximated by equality. The expression on the right-hand side of (51) scales
as length−1 and gives, for such partitioned systems, a measure of the amount of interfacial
surface area per unit volume times the “surface energy”, σ = W(u+) − W(u−). Note that
for well partitioned systems, (u+ − u−)‖u‖−1

W 1,∞ gives a rough lower bound on interfacial

widths, hence |Ω|(u+ − u−)−1‖u‖W 1,∞ gives an upper bound on the amount of interfacial
area within the volume |Ω|, and therefore, in some sense, L(t) and E−1(t) are measuring
similar quantities. If L(t) and E−1 both act as reasonable measures of “length” during
coarsening, clearly E−λL(1−λ)(t), 0 � λ � 1 also constitutes a reasonable measure.

In treating temperatures θ ∈ [0, 1] and mean masses u− < ū < u+, the following
technical results are useful:

CLAIM 9.1. Let 0 < θ < 1, u− < ū < u+, and let u(x, t) denote a solution to (46). Then

∂W

∂u
(u) � Ψ (θ)

∣∣u2 − u2±
∣∣,

where

Ψ (θ) := 1

u2±

[
−1 + 2

u±

{
ln(1 − u±) + ln(1 + u±)

ln(1 − u±) − ln(1 + u±)

}]
,
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and

1

|Ω|
∫

Ω

(
u2± − u2) dx � 2[E + θ ln 2].

The following lemmas [67], which make use of the estimates in Claim 9.1, are extensions
and generalization Lemmas 1, 2, and 3 from [47].

LEMMA 9.1. Let 0 < θ < 1 and u− < ū < u+. Then

(52)
(
u2± − ū2) �

[
32L(t)

(
5E(t)

u+[Ψ (θ)]1/2
+ 3|∂Ω|

|Ω|
)]1/2

+ F(E; θ), 0 < t,

where

(53)F(E; θ) = min

{[
2E

Ψ (θ)

]1/2

, 2[θ ln 2 + E]
}
.

LEMMA 9.2. Let 0 < θ < 1 and u− < ū < u+. Then

(54)|L̇|2 � −(
1 − u2±

)
Ė − F(E; θ)Ė, 0 < t,

where F(E; θ) is as defined in (53).

LEMMA 9.3. Suppose that

(55)|L̇|2 � −AEαĖ, 0 � t � T ,

where

(56)0 � α � 1, 0 � ϕ � 1, r < 3 + α, ϕr > 1 + α, (1 − ϕ)r < 2.

If, in addition to (55), (56),

(57)LE � B, 0 � t � T ,

then

(58)
1

T

[∫ T

0
ErϕL−(1−ϕ)r dt + L(0)(3+α)−r

]
� ϑ1T

−r/(3+α),

where ϑ1 = ϑ1(A,B, α, r, ϕ).
If, in addition to (55), (56),

(59)E � C, 0 � t � T ,

then

(60)
1

T

[∫ T

0
EϕrL−(1−ϕ)r dt + L(0)2−(1−ϕ)r

]
� ϑ2T

−(1−ϕ)r/2,

where ϑ2 = ϑ2(A,C, α, r, ϕ).
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REMARK 9.1. The inequalities in (56) imply that 2
1−ϕ

> 3 + α, hence the upper bound
predicted by (60) is slower than in (58).

We shall now see how Lemmas 9.1, 9.2, and 9.3 imply upper bounds for coarsening. Let
us first consider the expression for F(E; θ). If 0 < θ < 1 and E is sufficiently small, then
F(E; θ) = [2E/Ψ (θ)]1/2. If the term 3|∂Ω|

|Ω| in (52), which represents boundary effects,
is sufficiently small, Lemma 9.1 can be used to imply either a bound of the form (57)
or a bound of the form (59). In particular, if E is sufficiently small, then a bound of the
form (57) is implied. It now follows from Lemma 9.2, depending on the relative size of the
terms (1 − u2±) and [2E/Ψ (θ)]1/2, that Lemma 9.3 holds with either α = 0 or α = 1/2.
In particular, if E is sufficiently small, then Lemma 9.3 holds with α = 0. This yields the
shallow quench result of [47].

Suppose that θ = 0. If E is sufficiently small, then F(E; θ) = 2E. Again, Lemma 9.1
can be seen to imply either a bound of the form (57) or a bound of the form (59), with a
bound of the form (57) being implied if E is sufficiently small. When θ = 0, then referring
to (50), u± = ±1. Hence if F(E; θ) = 2E, Lemma 9.2 implies that (55) holds with α = 1.
This yields the deep quench result of [47].

More generally, Lemmas 9.1 and 9.2 can be used to demonstrate that if ū ∈ (u−, u+)

and θ ∈ [0, 1), then for any t > 0, there exists times 0 � T1 < T2 such that for all
t ∈ (T1, T2), (55) holds for some α ∈ {0, 1

2 , 1} and either (57) or (59) holds. Noting the
autonomy of the differential inequality, (55), it is possible to conclude

THEOREM 9.1. Let u(x, t) be a solution to (46) in the sense of Theorem 5.5 such that
u− < ū < u+ and 0 < θ < 1, then at any given time t � 0, if boundary effects are
negligible then upper bounds of the form

1

t − T1

[∫ t

T1

ErϕL−(1−ϕ)r dt + L(T1)
(3+α)−r

]
� ϑ1(t − T1)

−r/(3+α),

or

1

t − T2

[∫ t

T2

EϕrL−(1−ϕ)r dt + L(T2)
2−(1−ϕ)r

]
� ϑ2(t − T2)

−(1−ϕ)r/2,

may be prescribed, for appropriate values of the parameters.

The boundary terms, which are neglected in Theorem 9.1, may be incorporated by suit-
ably redefining E. Over time, E decreases, and the relative size of the terms on the right-
hand side of (52), (54) changes in accordance also with the size of ū and θ . In this manner,
a variety of time depend predictions for upper bounds on coarsening follow from Theo-
rem 9.1, with transitions which may clearly depend on both ū and θ , [67,76,33]. A com-
plete discussion of these results is quite involved [67], and a complete understanding of
the actual coarsening rates requires refinement of the bounds [20] and considerable further
work.

A CLOSING REMARK. Roughly fifty years have passed since the Cahn–Hilliard equation
was proposed as a model for phase separation [16,15]. While many aspects of its dynamics
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have been studied, many aspects remain to be analyzed. The author of this chapter apolo-
gies that the list of references which follow cannot claim to be complete. Clearly it is a
tribute to the robustness of the equation, that the details that have been forthcoming from
the analysis all seem to contribute to the overall picture and not to lead to the dismissal of
the model. The Cahn–Hilliard equation continues to be proposed as a relevant model in a
variety of new contexts, and it continues to be generalized in a variety of new directions,
[62,65].

Illustrations: Courtesy of Niv Aharonov.
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