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Abstract. Using formal asymptotics we demonstrate that in a low temperature coarsening
limit, a degenerate Allen-Cahn/Cahn-Hilliard system yields a geometric problem in which small
particles whose shape evolves according to surface diffusion move along a surface which itself
moves by motion by mean curvature. The degenerate Allen-Cahn/Cahn-Hilliard system was
developed in [7] to describe simultaneous ordering and phase separation, and within this context
the particles which contain a minor disordered phase are embedded along grain boundaries which
partition the system into two ordered phase variants. The limiting problem, though, can also be
viewed as a diffuse interface approximation for various problems in materials science in which
surface diffusion and motion by mean curvature are coupled, see, for example, [20, 28]. The
present analysis extends a previous study [26] which focused on the complete wetting limit and
on motions in the plane; here we treat the more generic partial wetting case and our analysis
accommodates motion in three dimensions.

Keywords: Geometric free boundary problems, motion by mean curvature, surface diffusion,
degenerate parabolic equations, higher order parabolic systems.

1. Introduction

In this paper we shall focus on the following Allen-Cahn/Cahn-Hilliard system of equations

(AC/CH)


ut = 4ε2∇ · [Q(u, v)∇µ],

µ = Fu(u, v)− ε24u,

vt = −1
4Q(u, v)[Fv(u, v)− ε24v],

for (x, t) ∈ Ω×(0, T ) where Ω is a smooth bounded domain in R3 and 0 < T < ∞, in conjunction
with the boundary conditions

n ·Q(u, v)∇µ = n · ∇u = n · ∇v = 0, (1.1)

for (x, t) ∈ ∂Ω× (0, T ), and its limiting motions. This system of equations was developed in [7]

to model simultaneous phase separation and ordering in binary alloys. In AC/CH, u denotes an
average concentration and v represents a nonconserved order variable. The mobility, Q(u, v),
is assumed to be nonnegative and to vanish at the ”pure phases.” This assumption, which
reflects divergence of the time scale in a minimal entropy completely ordered system, implies
degeneracy of the parabolic system AC/CH. The homogeneous free energy, F , will be assumed
to contain two terms, one which reflects entropy contributions and another which accounts for
the energy of mixing. The form which will be adopted for the entropy contribution will reflect
the fact that in the original derivation both u − v and u + v acted as concentration variables.
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Additional assumptions will be imposed on F in order to guarantee that the system will evolve
in a partial wetting regime. Roughly speaking what is necessary in this context is to require
that certain weighted geodesics connecting the ordered phases do not pass via an intermediary
globally energy minimizing pure phase, see [27]. We remark that our analysis neglects effects
which could lead to anisotropy or grain rotation; we do this for the sake of simplicity in order to
focus on asymptotics which couple the two types of motions. We will amplify our assumptions
further in the section which follows. For a discussion of models which are similar and related to
AC/CH, we refer the reader to Eguchi & Ninomiya [12] and Chen et. al. [8, 30].

In the present paper we shall develop formal asymptotics to describe the long time limiting
motion for the AC/CH system. Roughly speaking, the predicted limiting motion corresponds to
a coarsening regime in which small grains or particles of disordered phase, whose surface evolves
under motion by surface diffusion, are embedded within grain boundaries that are moving by
mean curvature. Within this context the surface of the disordered grains are known as interphase
boundaries (IPBs) and the grain boundaries are known as anti-phase boundaries (APBs). This
description of coarsening corresponds qualitatively well with experiment, see e.g. Krzanowski
& Allen [22]. Coupled surface diffusion and motion by mean curvature also occurs in materials
science in contexts other than that of ordering and phase separation. For example in grain
boundary motion where the grain boundary is connected to an external surface via a thermal
groove [20] and in sintering [28], such a description is appropriate under suitable assumptions.
However, while motion by mean curvature and motion by surface diffusion have been discussed
in numerous contexts in the past, their coupled motion has only recently been obtained as a
limiting motion from a diffuse interface model; i.e., from a system of equations such as AC/CH
which are prescribed in terms of variables which are defined at all points in Ω, [26]. There,
however, the assumptions were such that the dihedral angle between two IPBs which connected
up to an APB was zero to leading order. This feature, which can be associated with proximity
to a complete wetting limit, is non-generic and causes the limiting equations to be in some sense
singular.

The asymptotic analysis leading to the coupling of motion by mean curvature and surface
diffusion is somewhat delicate even in the partial wetting case, since rough time scale arguments
would lead one to expect motion by mean curvature to evolve on a much faster scale than motion
by surface diffusion, hence their coupling on the same time scale would be seemingly inconsistent.
However, the coupling becomes possible when the ”aspect ratio” (given by the ratio of a typical
length scale for the volumes which evolve by surface diffusion to a typical length scale for the
volumes which evolve by motion by mean curvature) is sufficiently small. Ideally, one should
like to obtain predictions for the manner in which the length scales of the system increase with
time during the long time coarsening regime, such as those obtained for example, by Kohn &
Otto [21] in the context of the Cahn-Hilliard equation in the deep quench limit. Though this has
so far not been accomplished in the present context, this may be possible to undertake within
the framework of the limiting equations which we obtain here. We remark that some degree of
”self-similarity” in length scale growth must be assumed in order to guarantee the validity of
the ”aspect ratio” assumption described above during coarsening.

Ideally we should like to be able to rigorously prove a connection between the dynamics of
AC/CH and the limiting asymptotic motions which we derive. We note that the connection
between the dynamics of diffuse interface equations and limiting asymptotics motions has been
rigorously established in a number of contexts, see for example Caginalp & Chen [4] and refer-
ences therein. We point out that in order to accomplish such a program in the present context,
a number of nontrivial steps are required. In particular, existence and regularity must be estab-
lished both for the AC/CH system and for the limiting equations of motion which we obtain.
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With regard to proving existence and regularity for the AC/CH system, so far this has only
been accomplished for one-dimensional domains, [10]. Progress in this direction is hindered by
the degeneracy of the problem and by the paucity of symmetry in the structure of the equations.
We note that existence and regularity has been established for the Cahn-Hilliard equation with
degenerate mobility in three dimensions in [13], even though the degeneracy there is of the same
level as in the present context. However the proof there is facilitated by the additional structure
which occurs in that context. Notably degenerate fourth order parabolic equations and systems
are also encountered in the context of the thin film equation and related systems. Similar issues
occur there with regard to existence and regularity, and have been a topic of much recent inter-
est and development, see e.g. [11]. With regard to establishing existence and regularity for the
limiting equations, this appears to be not too difficult to undertake, and results in this direction
should be forthcoming soon. This has been accomplished for example in [16] for the limiting mo-
tion which arises from a system of degenerate Cahn-Hilliard equations. In particular, it should
be easier to prove existence for the limiting dynamics which are obtained here, as compared with
establishing existence for limiting equations of motion coupling surface diffusion with motion by
mean curvature when complete wetting is predicted to leading order since additional degeneracy
is implied in that context. We remark that even when the two steps above have been established,
it cannot be expected that establishing a rigorous connection will be straightforward. Note that
although limiting motions were derived formally for the degenerate Cahn-Hilliard equation in
[6], and existence and regularity for both the degenerate Cahn-Hilliard equation and for its lim-
iting motions have been established in [13] and [14] respectively, a rigorous connection between
the two has yet to be proven. Thus results in this direction in the present context cannot be
expected to be forthcoming too rapidly. However, it is our hope that by presenting the formal
asymptotics in a careful and consistent manner, confidence and interest in our methodology will
be enhanced and the goals which we have outlined shall eventually be achieved.

We remark that once a clear connection has been established between the AC/CH diffuse
interface model and the limiting motions which we outline here, even before the connection has
become rigorously established, the AC/CH system can be looked upon as an approximation of
the geometric problem. As such, the system can be implemented as a numerical tool for studying
the limiting geometric problem. Notably, fully practical numerical schemes have been developed
for the AC/CH system both for the degenerate and the non-degenerate cases [1, 2].

The present paper backs away from the more technically involved analysis in [26] and puts
things in an easier and more generic setting. Considerable effort is devoted here to making
the formal steps in the asymptotic analysis more transparent than in [6] and [26]. Some of
the technical discussions which we present here are reminiscent of discussions which appear in
[6, 26], but they have been included here and in some cases modified for the sake of completeness,
clarity, and accessability. Hopefully the technical transparency of our presentation will promote
more rapid validification of the predicted limiting motions for degenerate CH equations and
systems as well as for the AC/CH system.

The outline of this paper is as follows. In §2, the basic assumptions and notation for our
analysis are given, and the strategy for the asymptotic analysis is presented. In §3, and specific
ansatzes are introduced for the asymptotic expansions in the outer solution and are demonstrated
to be self-consistent. §4 contains the derivation of the limiting motions for APBs and IPBs. The
laws governing triple junctions are derived in §5, and the laws governing the intersections of
APBs and IPBs with the external boundary ∂Ω are obtained in §6. In §7, our results are
summarized for the limiting geometric problem. We invite the interested reader to turn now to
Figure 6 for a rapid overview of these results.
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Figure 1. The region, B := {(u, v) ∈ R2| 0 < u + v < 1, 0 < u− v < 1}

2. Preliminaries

In this paper, we shall consider the degenerate Allen-Cahn/Cahn-Hilliard system (AC/CH)
for (x, t) ∈ Ω×(0, T ), where Ω is a smooth bounded domain in R3 and 0 < T < ∞, together with
the boundary conditions (1.1) for (x, t) ∈ ∂Ω×(0, T ). The first boundary condition represents a
no flux boundary condition; the second and third reflect ”free” or energy minimizing boundary
conditions. Here u, v, and µ are scalar functions representing respectively the concentration,
the order parameter, and the chemical potential. It is constructive to note that

~j := −Q(u, v)∇µ (2.1)

expresses the mass flux.
In AC/CH, F (u, v) is the homogeneous free energy which will be assumed to be of the form:

F (u, v) =
Θ
2

[
G(u + v) + G(u− v)

]
+ E(u, v), (2.2)

where Θ represents a dimensionless temperature,

G(s) = s ln s + (1− s) ln(1− s)

expresses the entropy density of the system, and E reflects the interaction energy density of the
system which we assume to be a polynomial of degree k,

E =
k∑

i, j=0

aij uivj . (2.3)

We remark that in the existence proof in [10], E was taken as a specific quadratic polynomial.
Restrictions on the coefficients aij will be implied by our assumptions with regard to certain
properties of F (u, v), as we shall explain shortly.

In order that F (u, v) be well defined, (u, v) must lie in the closure of the diamond shaped
region

B := { (u, v) | 0 < u− v < 1, 0 < u + v < 1 }.
See Figure 1. Off-hand, it is not obvious that by restricting the initial data to lie in B, that
solutions will continue to lie in B and that the initial value problem for AC/CH will be well-
posed. However, it was proven in [10] in one-dimension that this restriction, in conjunction
with the constraint that the average concentration u := 1

|Ω|
∫
Ω u dx satisfies u ∈ (0, 1) and with

appropriate degeneracy assumptions on Q(u, v), was in fact sufficient to guarantee existence,
though not uniqueness of solutions lying within B∪{0, 0}∪{1, 0}. In higher dimensions such as
N = 3 as we shall be considering here, in the absence of appropriate analytical results, we shall
assume the existence of smooth solution (u, v) which lie entirely within B. While analytically
it is of interest to consider solutions with nontrivial support of the set {0, 0} ∪ {1, 0}, energetic
considerations based on the assumptions to be made on F (u, v) lead one not to expect persistence
over time of nontrivial support for this set to occur generically.
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In AC/CH, the function Q(u, v) represents the mobility. We shall assume Q(u, v) to be
degenerate at the corners of B . More specifically, we will assume as in [10] that

Q(u, v) = P (u, v)Q̃(u, v), (2.4)

where P (u, v) = u(1 − u)(1
4 − v2) and Q̃(u, v) is a smoothly defined function which is non-

vanishing throughout B. Note that P (u, v) has simple roots at the corners of B,

{(0, 0), (1/2, 1/2), (1/2, −1/2), (1, 0)} (2.5)

This assumption can be seen as a generalization of the classical notion [5, 15] that mobilities
should vanish in pure phases since the exchange probabilities which determine the mobilities
vanish in a perfectly ordered environment.

In accordance with the assumption that v represents an ordering variable and that v → −v
represents the exchange of one phase variant by another energetically and kinetically equivalent
one, we shall assume that F (u, v) and Q(u, v) are even functions of the variable v,

F (u, v) = F (u, −v), Q(u, v) = Q(u, −v). (2.6)

We shall assume that the interaction energy E(u, v) is concave, its coefficients aij (see (2.3))
are O(1), and that it has two global minimizers located at (1

2 , ±1
2) and two minimizers located at

(0, 0) and (1, 0) which are local but not global minimizers. This implies that when Θ is positive
and sufficiently small (see (2.2)), the homogeneous free energy F (u, v) possesses 4 minimizers
within B which are located transcendentally close to the extreme points, (2.5). Moreover, for
small positive values of Θ; e.g. when Θ is positive and O(ε1/2), it is readily seen that there exists
a Lagrange multiplier, λ, such that the ”tilted” free energy F (u, v)+λu possesses precisely three
equal depth global minimizers within B which are located transcendentally close ( O(e−c/Θ) ) to
the extreme points of B for sufficiently small positive values of Θ. The information with regard
to the location of the equilibria will be critical in evaluating the behavior of the inner solutions
near ±∞. Henceforth, we shall incorporate the effect of the Lagrange multiplier into the free
energy density, setting F + λu → F which shall be referred to simply as ”the free energy”. This
implies in particular that

Fuu, Fvv > 0, FuuFvv − (Fuv)2 > 0 (2.7)

at the global minima. Finally, without loss of generality, we may assume that F = 0 at the
global minimizers.

So that our analysis will reflect the partial wetting case, we shall rely on the properties of
certain energy minimizing paths. We let α± denote the global minimizers of F located near
(1/2, −1/2) and (1/2, 1/2), respectively, which we shall refer to as the ordered phase variants,
and let α0 denote to the global minimizer of F which is located near (0, 0) which we shall refer
to as the disordered phase. We shall assume that the coefficients in (2.3) are such that there
exists a unique minimizing path connecting α± where

lim inf(u, v)∈A±

∫ 1

0

√
F (u, v){u̇2 + v̇2} dt, (2.8)

is attained, where

A+
− := { (u, v) ∈ C1[0, 1], (u(0), v(0)) = α−, (u(1), v(1)) = α+, (u(t), v(t)) ∈ B ∀t ∈ [0, 1]},

which does not pass via the global minimizer, α0. Were the geodesic to pass via α0, then it
would be implied (see [27]) that the surface energy of the transition from one phase variant to
the other was precisely equally to twice the surface energy of a transition from one of the phase
variants to to the disordered phase, and this would correspond to the complete wetting case
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which is not being treated here. In fact we shall make the slightly stronger assumption that the
geodesic path stays boundedly away from α0. This assumption can be interpreted as saying that
our system will be assumed to be in the generic partially wetting regime and not asymptotically
close to complete wetting.

We call to the reader’s attention that in the partial wetting case, the geodesic may or may
not pass via a local minimizers. If the geodesic passes via a local minimizer, then the system
is said to be prewetting. Otherwise, there is said to be absorption unless there is no variation
at all in concentration along the transition from one phase variant to the other. For simplicity
we shall also assume that the geodesic path stays boundedly away from (1, 0). We remark that
such an assumption is not unreasonable, since even in the prewetting case, under quite minimal
assumptions on F (u, u), the geodesic path can be shown not to cross a local minimizer located
near (1, 0), if such a local minimizer exists. Suppose, for example, that we were to assume
that in addition to the v → −v symmetry, prior to ”tilting” by the Lagrange multiplier λ,
the free energy F (u, v) also exhibits u → 1/2 − u symmetry. Then it is readily seen that if
0 < ū < 1/2 as we have assumed, an energy minimizing geodesic cannot come too close to
(1, 0), since this would imply that one could readily construct a path lying to the left of u = 1/2
with lower energy, which would contradict the assumption that the original path described was
itself energy minimizing.

For the analysis which follows, we shall also make use of the minimizing paths connecting α±
with α0. Analytically, these are the paths where

lim inf(u, v)∈A±0

∫ 1

0

√
F (u, v){u̇2 + v̇2} dt

is attained, where

A±0 := { (u, v) ∈ C1[0, 1], (u(0), v(0)) = α0, (u(1), v(1)) = α±, (u(t), v(t)) ∈ B ∀t ∈ [0, 1]}.

We shall assume this minimizing path to be uniformly bounded an O(e−c/Θ) distance away from
∂B. We remark that the limit Θ → 0 is a singular limit, known in the literature [29] as the
deep-quench limit. In this limit, the minimizers of F go to the corners of B, and the geodesics
may be totally or partially contained in ∂B.

We point out to the reader that inherently the partial wetting case is far more generic than the
complete wetting case. In [27], it is demonstrated analytically that interaction energy E(u, v) =
αu(1 − u) − βv2 with 0 < α < β which was employed in [26] indeed implies complete wetting
when ū ∈ (0, 1/2)∪(1/2, 1) at Θ = 0, and some simple examples are given of interaction energies
which imply partial wetting.

In accordance with the discussion in [26], we shall introduce a slow time scale, τ = ε7/2t, into
the AC/CH equations and set τ = t for notational convenience. In this manner, we obtain

ε5/2ut = 4ε∇ · [Q(u, v)∇µu],

µ = Fu(u, v)− ε24u,

ε7/2vt = −1
4Q(u, v)[Fv(u, v)− ε24v].

(2.9)

Having thus rescaled time, all dynamic phenomena of interest will be assumed to occur on a
O(1) time scale.

To accommodate with our assumption that we shall be considering a low temperature limit,
we shall assume that Θ = O(ε1/2), or more specifically, that

Θ = ε1/2. (2.10)
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Note that by (2.2) in fact F = F (u, v; Θ) and hence Fu = Fu(u, v; Θ) and Fv = Fv(u, v; Θ).
However, as we have noted above, the deep quench limit is singular. Therefore, whenever ex-
panding F or any of its u, v derivatives about a given states, we shall maintain the Θ dependence
even though by assumption Θ = O(ε1/2) in order to avoid this singular limit. For simplicity,
however, we shall not make the dependence of F on Θ explicit in our notation. We remark
that limiting equations of motion for the degenerate Cahn-Hilliard equation were obtained in
[6] both in the deep quench limit and when 0 < Θ << 1. In the deep quench limit, though, the
asymptotics were obtained there directly at Θ = 0 and not by taking a Θ → 0 limit in the low
temperature asymptotics.

As mentioned in the Introduction, we shall assume that the disordered phase constitutes a
minor phase; i.e., that the volume fraction of Ω which is occupied by the disordered phase is
small. This shall be further reflected in an assumption that the curvature of particles which
contain the disordered phase is very large, or more specifically that

HIPB = O(ε−1/2), (2.11)

where HIPB denotes the mean curvature at points along IPBs. Note that the structure of (2.9)
is mass conservative. These assumptions imply that the mean concentration of the system as a
whole must be close to 1/2, the concentration of the ordered phase variants. We may quantify
this requirement by setting

1/2− ū = O(ε3/2),
where

ū :=
1
|Ω|

∫
Ω

u dx.

In parallel with (2.11) and in analogy with the assumptions made in [26], we shall assume that
the curvature of the APBs in very small, or more specifically that

HAPB = O(ε3/2), (2.12)

where HAPB denotes the mean curvature at points along APBs. Note that the analogous
requirement in [26] was that 1/2 − ū = O(ε). This alteration in the assumptions is in order
to attain scaling consistency with the scaling requirement (2.11) when three rather than two
dimensions are being considered. By reverting to the assumption that 1/2 − ū = O(ε), the
analysis in this paper could readily be adapted for the case N = 2.

If F (u, v; 0) is sufficiently convex, then it is reasonable to expect that if 1/2 − u = O(ε3/2),
but u 6= 1/2, and if (u(t), v(t)) denotes the geodesics connecting α− and α+, then∫ 1

0

u(s)− u(0)
Q(u(s), v(s))

ds 6= 0. (2.13)

We shall assume here that (2.13) holds.

Some words on ”strategy” follow at this point.

3. The outer solution

As in [26], we shall not actually solve explicitly for the outer solution. Rather we shall make
a number of ansatzes with regard to the form of the perturbations expansions which are then
shown to be self-consistent and which allow the inner and outer solutions to be determined by
the asymptotics to leading order. More specifically, let αi := (u0, i, v0, i), i = 1, 2, 3 denote the
global minimizers of the free energy, and let the distance of these minimizers to the nearest
extreme point of B be given as O(e−c/

√
ε), where c is a fixed constant. In accordance with
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the discussion in §2, the minimizers (u0, i, v0, i), i = 1, 2, 3 are bounded an O(e−c/
√

ε) distance
away from the boundary of B, ∂B. Throughout the outer region, we shall assume perturbation
expansion of the form

u(x, t) = u0, i + (u0 + ε1/2u1/2 + εu1 + ε3/2u3/2 +O(ε2))e−c/
√

ε, (3.1)

v(x, t) = v0, i + (v0 + ε1/2v1/2 + εv1 + ε3/2v3/2 +O(ε2))e−c/
√

ε, (3.2)

to be valid, where c is the same constant as before. In (3.1)-(3.2) the superscripts refer to
the order of the various terms in the perturbation expansion in which they appear. We shall
employ this notational convention throughout the text, clarifying further only where necessary.
Similarly with regard to the mass flux, ~j, we shall assume that

~j(x, t) = (~j0 + ε1/2~j1/2 + ε~j1 + ε3/2~j3/2 +O(ε2))e−c/
√

ε, (3.3)

where again c is the same as above. And finally with regard to µ we shall make the scaling ansatz
that

µ(x, t) = µ0 + ε1/2µ1/2 + εµ1 + ε3/2µ3/2 +O(ε2). (3.4)

We remark that the terms u0 and v0 are necessary in order to guarantee the overall self-
consistency of our asymptotic framework. By including these terms, our assumptions on the
form of the perturbation expansions for u and v are seen to parallel the form which is assumed
for ~j.

Let us now ascertain the implications of our scaling assumptions. For ease of presentation we
shall employ in this section only, the following notation

µu := µ = Fu(u, v) + ε24u,

and
µv := Fv(u, v) + ε24v.

Taylor expanding Fu(u, v) about one of the global minimizers (u0,i, v0,i), i = 1, 2, or 3, we ob-
tain that

Fu(u, v) = ε1/2F 1/2
u + εF 1

u +O(ε3/2,

where F
1/2
u = (F 0

uuu0 + F 0
uvv

0)ε−1/2e−c/
√

ε and F 1
u = (F 0

uuu1/2 + F 0
vvv

1/2)e−c/
√

ε, where F 0
uu

denotes Fuu evaluated at the global minimizer about which we are expanding. We point out
here, that in accordance with our remarks in §2, the dependence of F and its derivatives on Θ
is maintained at all levels of the expansions. Similarly, we obtain that

Fv(u, v) = ε1/2F 1/2
v + εF 1

v +O(ε3/2),

where the definitions of F
1/2
v , F 1

v are analogous to those of F
1/2
u , F 1

u . By considering the
assumed form for F given in (2.2) and recalling (2.10) and our assumptions on the location of
the minimizers (u0,i, v0,i), we see that F 0

uu, F 0
uv, F 0

vv areO(ε1/2ec/
√

ε). From the Taylor expansions
given above for Fu(u, v) and Fv(u, v), we obtain that Fu(u, v) and Fv(u, v) are O(ε1/2) and have
regular perturbation expansions in ε1/2. Thus, the ansatz given in (3.4) is, in fact, appropriate
for µv as well as for µu and the assumed scalings are self-consistent within the framework of the
second and third equations in (2.9) in that all terms have regular perturbation expansions in
ε1/2. In particular, it follows that

µ0
u = 0, µ0

v = 0. (3.5)
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Note that from the assumptions above it follows that

µ
1/2
u = (F 0

uuu0 + F 0
uvv

0)ε−1/2e−c/
√

ε

µ
1/2
v = (F 0

uvu
0 + F 0

vvv
0)ε−1/2e−c/

√
ε,

from which we may conclude, in conjunction with the inequality from F 0
uuF 0

vv− (F 0
uv)

2 > 0 from
§2, that u0 and v0 are determined in the outer solution by µ

1/2
u and µ

1/2
v .

With regard to the mobility, Taylor expanding Q(u, v) about the nearest corner in B to
(u0,i, v0,i) which we shall denote as (ū0,i, v̄0,i), we obtain

Q(u, v) = [Q̄0 + ε1/2Q̄1/2 + εQ̄1 +O(ε3/2)]e−c/
√

ε,

where
Q̄0 := Q0

u((u0,i − ū0,i)ec/
√

ε + u0) + Q0
v((v

0,i − v̄0,i)ec/
√

ε + v0),

Q̄1/2 := Q0
uu1/2 + Q0

vv
1/2, Q̄1 := Q0

uu1 + Q0
vv

1,

and where Q0
u and Q0

v denote respectively Qu and Qv evaluated at (ū0,i, v̄0,i). Note that the
assumptions on Q, u, and v imply that Q(u, v) is O(e−c/

√
ε) with the same constant c as above.

Hence referring to (3.1), (3.2), (3.4), we see that the scaling in the first equation in (2.9) is
self-consistent in that all terms are of the form e−c/

√
ε times a regular perturbation expansion

in ε1/2. Finally, consideration of (3.3) and (2.1) yields that

~j0 = 0. (3.6)

Geodesics We recall that (U0(ρ), V 0(ρ)) as it was defined in §2 corresponds to a reparame-
terization of the geodesic path connecting the two ordered variants. Because the geodesic is
an energy minimizing path and because of the v → −v symmetry which has been assumed for
F (u, v), it is easy to show that

V 0(ρ) ≥ 0 for ρ ≥ 0, (3.7)
since the energy as defined in (2.8) may be lowered if (3.7) does not hold. Note that (3.7) implies
in particular that V 0(ρ) will stay O(1) away from −V∞ for ρ ∈ (0, ∞). Moreover, because
the geodesic is an energy minimizing path, it is not difficult to argue that for ρ ∈ (−ρ0, ρ0),
for ρ0 = O(1), (U0(ρ), V 0(ρ)) will stay O(1) away from (U∞, ±V∞) which constitute global
minimizers of F (u, v). As noted in §2, the geodesic path traced out by (U0(ρ), V 0(ρ)) can also
be assumed to stay O(1) away from (0, 0) and (1, 0).

4. The inner solutions

As discussed in the Introduction, we shall assume that throughout the coarsening regime, there
exist thin domains of rapid spatial variation which partition Ω ⊂ R3 into various regions in which
the outer solutions is valid. These thin domains or inner regions are assumed to have an O(ε)
width and we shall parameterize these inner regions via a locally defined orthonormal system,
(r, s) where r = r(x, t) measures normal distance from the mid-surface of the inner region, and
s(x, t) = (s1(x, t), s2(x, t)) constitutes an orthonormal frame relative to the mid-surface of the
inner region, so that |∇r| = |∇s1| = |∇s2| = 1 and ∇r · ∇s1 = ∇r · ∇s2 = ∇s1 · ∇s2 = 0.
Clearly, there is some variability in how the mid-surface of the inner region is to be chosen. This
difficulty can be treated by implementing a suitable normalization condition, as we shall explain
in the sequel.

It is readily verified that
4r = −2H, and rt = −W, (4.1)

9



where H = 1
2(κ1 + κ2) denotes the mean curvature and W (x, t) denotes the normal velocity of

the interface in the direction in which normal distance is measured. From (4.1), the orientation
of the curvature can be inferred. Recalling that time has been assumed to be scaled so that all
temporal variation will occur on an O(1) scale, we shall assume that

W = W 0 +O(ε1/2), (4.2)

and our assumptions for H will be in accordance with (2.11),(2.12).
Since the thickness of the inner region is being taken to be O(ε), we introduce the stretched

inner variable ρ = r/ε. In terms of the variables (ρ, s) where s = (s1, s2), the functions u, v,
µ, and ~j will be assumed to be expressible via the following regular perturbation expansions

u(x, t) = U(s, ρ, t) = U0 + ε1/2U1/2 + εU1 +O(ε3/2),

v(x, t) = V (s, ρ, t) = V 0 + ε1/2V 1/2 + εV 1 +O(ε3/2),

µ(x, t) = µ(s, ρ, t) = µ0 + ε1/2µ1/2 + εµ1 +O(ε),

~j(x, t) = ~J(s, ρ, t) = ~J−1ε−1 + ~J−1/2ε−1/2 + ~J0 + ε1/2 ~J1/2 + ε ~J1 +O(ε3/2).

Since the geodesics connecting between the minimizers of the free energy have been assumed to
bounded away from the boundary of B, based on the notion that the solution in the inner region
should also take in some approximate minimal path between approximate minimizers, we shall
assume (U, V ) to be bounded away from the minimizers (u0,i, v0,i) and from the boundary of B
within the inner region, and hence F (U, V ) and its derivatives to be Taylor expandable about
(U0, V 0) with O(1) coefficients.

4.1. The inner solution along IPBs. Proceeding within the framework outlined at the be-
ginning of the section, let us consider an inner region with an ordered variant lying ”ahead”
in the positive r direction and with a disordered region lying ”behind” in the negative r di-
rection. Referring to the ordered minimizer which is approximately reached in the outer region
lying ahead as (u0,+, v0,+) and the disordered minimizer which is approximately reached behind
as (u0,−, v0,−), we may normalize our coordinates by setting

U(s, 0, t) =
1
2
(u0,+ + u0,−). (4.1.1)

Note that (4.1) implies in the context of the scaling assumption (2.11) that

4r = −2ε−1/2H−1/2 − 2H0 − 2ε1/2H1/2 +O(ε). (4.1.2)

To obtain an evolution equation for the IPB interface, we employ the expansions outlined at the
beginning of the section and solve the relevant equations at orders O(ε−1) though O(ε). The
analysis here is similar and in fact somewhat easier than in the APB case which follows in §4.2.

At O(ε−1), it follows from the first equation in (2.9) and (2.1) that

4(Q0µ0
ρ)ρ = 0, (4.1.3)

~J−1 · ~n = −4Q0µ0
ρ, (4.1.4)

where Q0 = Q(U0, V 0). Integrating (4.1.3) and employing (4.1.4), we obtain that

Q0µ0
ρ = f−1(s, t) = − ~J−1 · ~n.

Now matching with the outer region, it follows that Q0µ0
ρ = 0. Recalling that Q(U, V ) vanishes

only at the corners of B, (ū0,i, v̄0,i), and taking (U0, V 0) to lie strictly within the interior of B
10



throughout the inner region, we may conclude that Q0 should be non-vanishing throughout the
inner region, and hence that

µ0
ρ = 0.

Integrating this last equation and matching with the outer region we find that

µ0 = 0. (4.1.5)

At O(ε−1/2), we obtain from the first equation in (2.9) and from (2.1) that

4(Q0µ1/2
ρ )ρ = 0, (4.1.6)

~J−1/2 · ~n = −4Q0µ1/2
ρ . (4.1.7)

As in the analysis at O(ε−1), we obtain that

µ1/2
ρ = 0, (4.1.8)

though we cannot now conclude that µ1/2 = 0.

At O(1), noting (4.1.5) and(4.1.8), it follows from (2.9) and (2.1) that

0 = 4(Q0µ1
ρ)ρ, (4.1.9)

0 = F 0
U − U0

ρρ, (4.1.10)

0 = −1
4
Q0[F 0

V − V 0
ρρ], (4.1.11)

~J0 · ~n = −4Q0µ1
ρ, (4.1.12)

where F 0
U = FU (U0, V 0) and F 0

V = FV (U0, V 0). From (4.1.9) and (4.1.12), we obtain by inte-
grating, matching, and recalling (3.6) that

µ1
ρ = 0. (4.1.13)

Since Q0 is being taken to be non-vanishing within the inner region, it follows from (4.1.11)-
(4.1.10) and (4.1.5) that {

F 0
U − U0

ρρ = 0,

F 0
V − V 0

ρρ = 0.
(4.1.14)

Equations (4.1.14) and the boundary conditions obtained by matching with the outer solutions
determine (U0(ρ), V 0(ρ)) uniquely up to a ρ → ρ + ρ̄ transition, as the heteroclinic orbit
connecting the energy minimizing disordered phase with one of the two ordered variants. This
degree of freedom is eliminated by the normalization condition (4.1.1) which implies here that
U0(0) = 1

2(u0,++u0,−). Equation (4.1.14) can be viewed as a re-parameterization of the geodesic
connecting one of the two ordered variants with the energy minimizing disordered phase which
was described in §2; see the discussion in [27]. Note that to leading order the inner solution indeed
approximates the geodesic and stays strictly within the interior of B, which is self-consistence
with the assumptions given at the beginning of this section.

At O(ε1/2), taking (4.1.5), (4.1.8), (4.1.13), and (4.1.14) into account, we obtain from (2.9)
and (2.1) that

0 = 4(Q0µ3/2
ρ )ρ, (4.1.15)

µ1/2 = F
1/2
U − U1/2

ρρ + 2U0
ρ H−1/2, (4.1.16)

0 = −1
4
Q0[F 1/2

V − V 1/2
ρρ + 2V 0

ρ H−1/2], (4.1.17)
11



~J1/2 · ~n = −4Q0µ3/2
ρ , (4.1.18)

where F
1/2
U and F

1/2
V are the respective coefficients of ε1/2 in the Taylor expansion of FU (U, V )

and FV (U, V ) about (U0, V 0), namely

F
1/2
U := FUU (U0, V 0)U1/2 + FUV (U0, V 0)V 1/2,

F
1/2
V := FV U (U0, V 0)U1/2 + FV V (U0, V 0)V 1/2.

From (4.1.15) and (4.1.18), we may conclude by integrating and matching that

Q0µ3/2
ρ = f3/2(s, t) = ~J1/2 · ~n, (4.1.19)

where f3/2(s, t) is transcendentally small. Since Q0 does not vanish throughout the inner region,
it follows from (4.1.17) and (4.1.16) that{

F
1/2
U − U

1/2
ρρ = −2U0

ρ H−1/2 + µ1/2,

F
1/2
V − V

1/2
ρρ = −2V 0

ρ H−1/2,

Multiplying this system by (U0
ρ , V 0

ρ ), integrating over the interval (−∞, ∞), using (4.1.8) and
(4.1.14), then matching with the outer region,

µ1/2 =
2H−1/2

[U0]∞−∞

∫ ∞

−∞
[(U0

ρ )2 + (V 0
ρ )2] dρ. (4.1.20)

At O(ε), taking into account (4.1.5), (4.1.8), and (4.1.13), the first equation in (2.9) and (2.1)
yield

0 = 4(Q0µ2
ρ + Q1/2µ3/2

ρ )ρ, (4.1.21)

~J1 · ~n = −4Q0µ2
ρ − 4Q1/2µ3/2

ρ , (4.1.22)

where Q1/2 is the coefficient of ε1/2 in the Taylor expansion of Q(U, V ) about (U0, V 0), namely,
Q1/2 := QU (U0, V 0)U1/2+QV (U0, V 0)V 1/2. From (4.1.21) and (4.1.22), integrating and match-
ing,

Q0µ2
ρ + Q1/2µ3/2

ρ = f1(s, t) = ~J1 · ~n, (4.1.23)

where f1(s, t) is T.S.T., where the notation T.S.T. is being used to denote transcendentally
small terms. In order to obtain an evolution for the IPB interface, it is not necessary to consider
the second and third equations in (2.9).

At O(ε3/2), taking into account (4.1.5), (4.1.8), and (4.1.13), the first equation in (2.9) and
(2.1) may be written as

−U0
ρ W 0 = 4(Q0µ5/2

ρ + Q1/2µ2
ρ + Q1µ3/2

ρ )ρ + Q04sµ
1/2, (4.1.24)

~J3/2 · ~n = −4Q0µ5/2
ρ − 4Q1/2µ2

ρ − 4Q1µ3/2
ρ , (4.1.25)

where 4s denotes the Laplace-Beltrami operator on the mid-surface of the inner region defined
by r = 0, and Q1 is the coefficient of ε in the Taylor expansion of Q(U, V ) about (U0, V 0).
Noting that (4.1.24) may be written as

−U0
ρ W 0 = 4( ~J3/2 · ~n)ρ + Q04sµ

1/2,
12



then integrating this equation over the interval (−ε−1/4, ε−1/4) and matching with the outer
solution, we obtain

W 0 = −24sH
−1/2

([U0]∞−∞)2

∫ ∞

−∞
[(U0

ρ )2 + (V 0
ρ )2] dρ

∫ ε−1/4

−ε−1/4

Q0 dρ + TST, (4.1.26)

which implies that in the limit ε → 0

W 0 = −cIPB4sH
−1/2, (4.1.27)

where

cIPB = lim
ε→0

[
2

([U0]∞−∞)2

∫ ∞

−∞
[(U0

ρ )2 + (V 0
ρ )2] dρ

∫ ∞

−∞
Q0 dρ

]
.

It would be seemingly preferable and simpler to integrate Q0 over the interval (−∞, ∞) in the
discussion above, however the integral

∫∞
−∞Q0 dρ is divergent since Q(U0, V 0) → Q(u0,i, v0,i) as

ρ → ±∞ where Q(u0,i, v0,i) is TST though non-vanishing. Therefore it is reasonable to inquire
in what sense the integral over Q0 in (4.1.27) is robustly defined. Note that by relying on [9,
Section 13], one may show that for ρ > ρ0 where ρ0 is O(1)

U0 − U∞ = CUe−f(ε)ρ + o(e−f(ε)ρ), V 0 − V∞ = CV e−f(ε)ρ + o(e−f(ε)ρ), (4.1.28)

where (U∞, V∞) = limρ→∞(U(ρ), V (ρ), CU and CV are O(1), and f(ε) = Θ1/2ec/2Θ where c is
the same constant which was used in §2 to describe the location of the minimizers of F (u, v),
with similar predictions at −∞. Using (4.1.28), it is not difficult to demonstrate that the integral
over Q0 in (4.1.26) is O(1) and that the limits of integration may be taken as ±l(ε) where l(ε) is
any algebraically large function of ε, and the resultant variation (4.1.26) will only be TST small.
We remark that it is reasonable to require that l(ε) = o(ε−1), since the width of the inner region
given in terms of the original variables is ε.

4.2. The inner solution along APBs. We proceed again according to the framework outlined
at the beginning of this section, and it we consider an inner region which has one of the two
ordered variants lying ”ahead” of it, in the positive r direction, and the other of the two ordered
variants lying at its rear. We adopt the normalization that V (s, 0, t) = 0. Equation (4.1)
implies in the context of the scaling assumption (2.12) that

4r = −2ε3/2H3/2 +O(ε2). (4.2.1)

To obtain an evolution equation for the APB interface, we employ the expansions outlined
earlier, as in the IPB case. This time, however, the relevant equations will be solved at orders
O(ε−1) though O(ε5/2). The analysis at orders O(ε−1) through O(1) is identical to the APB
analysis. At higher orders we ,ale use of certain symmetry properties which will be demonstrated
to hold for the heteroclinic orbit connecting the two ordered variants.

At O(ε−1), as in the IPB case
4(Q0µ0

ρ)ρ = 0,

~J−1 · ~n = −4Q0µ0
ρ,

where Q0 = Q(U0, V 0), which implies
µ0 = 0.

At O(ε−1/2), we obtain that
4(Q0µ1/2

ρ )ρ = 0,
13



~J−1/2 · ~n = −4Q0µ1/2
ρ ,

which imply that
µ1/2

ρ = 0.

At O(1), one gets
0 = 4(Q0µ1

ρ)ρ,

0 = F 0
U − U0

ρρ,

0 = −1
4
Q0[F 0

V − V 0
ρρ],

~J0 · ~n = −4Q0µ1
ρ,

where F 0
U = FU (U0, V 0) and F 0

V = FV (U0, V 0), which yields that

µ1
ρ = 0, (4.2.2)

and that
F 0

V − V 0
ρρ = 0, (4.2.3)

F 0
U − U0

ρρ = 0. (4.2.4)

In the present context, equations (4.2.3)-(4.2.4) and the boundary conditions obtained by match-
ing with the outer solutions now determine (U0(ρ), V 0(ρ)) uniquely, up to ρ → ρ + ρ̄ transla-
tions, as the heteroclinic orbit connecting the two ordered variants, which can be viewed as a
re-parameterization of the geodesic connecting the two ordered variants. It is important to note
that the assumption (2.6) with regard to the v → −v symmetry of F (u, v) implies that the
unique globally energy minimizing geodesic which connects the two ordered variants, which are
symmetrically located within B, must itself be symmetric with respect to v → −v reflection. (If
it were not symmetric, a symmetric path with lower energy could be constructed which would
yield a contradiction, see e.g. [23, Lemma 1].) The normalization V (s, 0, t) = 0 implies now
that V 0(0) = 0, and hence that

(U0(ρ), V 0(ρ)) = (U0(−ρ), −V 0(−ρ)), for all ρ ∈ (−∞, ∞).

In other words, U0(ρ) is an even function, and V 0(ρ) is an odd function. Since the relevant
geodesics have been taken to lie strictly within the interior of B, we obtain that Q0 is non-
vanishing throughout the inner region.

At O(ε1/2),
0 = 4(Q0µ3/2

ρ )ρ,

µ1/2 = F
1/2
U − U1/2

ρρ ,

0 = −1
4
Q0[F 1/2

V − V 1/2
ρρ ],

~J1/2 · ~n = −4Q0µ3/2
ρ ,

where F
1/2
U and F

1/2
V are the coefficients of ε1/2 in the Taylor expansion of FU (U, V ) and

FV (U, V ) about (U0, V 0), as in the IPB analysis. From these equations, it follows that, in
analogy with the IPB analysis,

Q0µ3/2
ρ = g3/2(s, t) = ~J1/2 · ~n, (4.2.5)
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where g3/2(s, t) is transcendentally small, and that{
F

1/2
U − U

1/2
ρρ = µ1/2,

F
1/2
V − V

1/2
ρρ = 0,

(4.2.6)

where F
1/2
U := F 0

UUU1/2 +F 0
UV V 1/2 and F

1/2
V := F 0

UV U1/2 +F 0
V V V 1/2 are the coefficients of ε1/2

in the respective Taylor expansions of FU (U, V ) and FV (U, V ) about (U0, V 0). Multiplying
this system by (U0

ρ , V 0
ρ ), integrating over the interval (−∞, ∞), and matching with the outer

region, we get now that

0 =
∫ ∞

−∞
U0

ρ µ1/2 dρ. (4.2.7)

Since U0
ρ is odd and µ1/2 is independent of ρ, no new information is gained from (4.2.7). However,

since µ1/2 is independent of ρ, the right hand side of the first equation in (4.2.6) is an even
function of ρ and the right hand side of the second equation in (4.2.6) can be considered an
odd function of ρ. Note that (U0

ρ , V 0
ρ ) constitutes a homogeneous solution to (4.2.5) such

that (U0
ρ (±∞), V 0

ρ (±∞)) = 0. Hence given any solution to (4.2.5) which satisfies prescribed
Dirichlet boundary matching conditions at ±∞, may be written as (U1/2, V 1/2) + k(U0

ρ , V 0
ρ ),

where k = k(s, t) is an arbitrary function and

(U1/2, V 1/2) ⊥ (U0
ρ , V 0

ρ ). (4.2.8)

The condition (4.2.8) This normalization condition can be seen to imply that U1/2 is an even
function of ρ and V 1/2 is an odd function of ρ. See Appendix I for a detailed proof. In particular,
it yields that V 1/2(0, s) = 0. Since the boundary conditions at ±∞ and the fact that V 0(0) = 0
imply that V 0

ρ (0) 6= 0, it follows from the normalization condition that k(s, t) = 0.

At O(ε), taking into account our results in this section up to now, we get that

0 = 4(Q0µ2
ρ + Q1/2µ3/2

ρ )ρ, (4.2.9)

~J1 · ~n = −4Q0µ2
ρ − 4Q1/2µ3/2

ρ , (4.2.10)

0 = −1
4
Q0[F 1

V − V 1
ρρ], (4.2.11)

µ1 = F 1
U − U1

ρρ, (4.2.12)

where Q1/2 is the coefficient of ε1/2 in the Taylor expansion of Q(U, V ) about (U0, V 0), and F 1
U

and F 1
V are the coefficients of ε in the respective Taylor expansions of FU (U, V ) and FV (U, V )

about (U0, V 0). From (4.2.9) and (4.2.10), we may conclude as in the IPB analysis that

−4Q0µ2
ρ − 4Q1/2µ3/2

ρ = g1(s, t) = ~J1 · ~n, (4.2.13)

where g1(s, t) is T.S.T.. From (4.2.11) and (4.2.12), we obtain a system which we may write as{
F 0

UUU1 + F 0
UV V 1 − U1

ρρ = µ1 − 1
2 [F 0

UUU (U1/2)2 + 2F 0
UUV U1/2V 1/2 + F 0

UV V (V 1/2)2],

F 0
UV U1 + F 0

V V V 1 − V 1
ρρ = −1

2 [F 0
V UU (U1/2)2 + 2F 0

UV V U1/2V 1/2 + F 0
V V V (V 1/2)2].

(4.2.14)
We proceed as in theO(ε1/2) analysis and write the solution to (4.2.14) as (U1, V 1)+k(U0

ρ , V 0
ρ )

where (U1, V 1) ⊥ (U0
ρ , V 0

ρ ). We now wish to show that the constraint (U1, V 1) ⊥ (U0
ρ , V 0

ρ )
implies that U1 is even and V 1 is odd, as functions of ρ. To accomplish this, we make use of the
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following considerations. By induction it is easy to see that (2.6) implies that for any integers
j and k

∂j+k

∂U j∂V k
F (U, V ) = (−1)k ∂j+k

∂U j∂V k
F (U, −V ). (4.2.15)

Since U0(ρ) is an even function of ρ and V 0(ρ) is an odd function of ρ, it follows from (4.2.15)
that ∂j+k

∂Uj∂V k F (U0(ρ), V 0(ρ)) is an even function of ρ if k is even and it is an odd function of ρ if
k is odd. From this remark and since µ1 is independent of ρ, we may readily verify that the right
hand side of the first equation in (4.2.14) is even and the right hand side of the second equation
in (4.2.14) is odd, with respect to ρ. Hence, we may use Appendix I to conclude that indeed
U1 is even and V 1 is odd, with respect to ρ, and therefore we may sat k(s, t) = 0 as earlier.
We note that if we now take the inner product of (4.2.14) with (U0

ρ , V 0
ρ ), as in the analysis at

O(ε1/2) no additional information is gained.

At O(ε3/2), taking into account our results so far, we find that

−W 0U0
ρ = 4(Q0µ5/2

ρ + Q1/2µ2
ρ + Q1µ3/2

ρ )ρ + 4Q04sµ
1/2, (4.2.16)

~J3/2 · ~n = −4Q0µ5/2
ρ − 4Q1/2µ2

ρ − 4Q1µ3/2
ρ , (4.2.17)

0 = −1
4
Q0[F 3/2

V − V 3/2
ρρ ], (4.2.18)

µ3/2 = F
3/2
U − U3/2

ρρ , (4.2.19)

where Q1 is the coefficient of ε in the Taylor expansion of Q(U, V ) about (U0, V 0) and F
3/2
U

and F
3/2
V are the coefficients of ε3/2 in the Taylor expansion of FU (U, V ) and FV (U, V ) about

(U0, V 0), and where 4s is the Laplace-Beltrami.
Note now that we may write (4.2.16) as

−W 0U0
ρ = −( ~J3/2 · ~n)ρ + 4Q04sµ

1/2. (4.2.20)

We now integrate this equation with respect to ρ over the interval (−ε−
1
4 , ε−

1
4 ). Since U0 is even

and goes exponentially to U∞, where U∞ := limρ→±∞ U0(ρ) and since µ1/2 is independent of
ρ, we obtain that

44s µ1/2

∫ ε−
1
4

−ε−
1
4

Q(U0, V 0) dρ = T.S.T..

As in the IPB analysis, it is readily seen that the integral on the left hand side is O(1) and
robustly defined. Hence

4s µ1/2 = T.S.T.. (4.2.21)

With regard to equations (4.2.18) and (4.2.19), proceeding as we did with equations (4.2.11)
and (4.2.12) at O(ε), we find that ∫ ∞

−∞
µ3/2U0

ρ dρ = 0.

Integrating the above equation by parts yields

{µ3/2(U0(ρ)− U∞)}|∞−∞ −
∫ ∞

−∞
µ3/2

ρ (U0 − U∞) dρ = 0.
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Since matching implies that limρ→±∞ µ3/2 is bounded or has at most linear behavior, and since
we may conclude as in (4.1.28) that limρ→±∞(U0−U∞) is exponentially decaying, the first term
vanishes and hence ∫ ∞

−∞
µ3/2

ρ (U0 − U∞) dρ = 0.

Recalling (4.2.5), this implies that

g3/2

∫ ∞

−∞

(U0 − U∞)
Q(U0, V 0)

dρ = 0.

In accordance with (2.13), we assume the integral in the expression to be non-vanishing. There-
fore, g3/2 = 0, and hence

µ3/2
ρ = 0.

Returning to (4.2.13), we find that

−4Q0µ2
ρ = g1 = TST.

Finally, from (4.2.18),(4.2.19), the normalization condition, and Appendix I, we find that (U3/2, V 3/2) ⊥
(U0

ρ , V 0
ρ ) and hence that U3/2 is even and V 3/2 is odd, with respect to ρ.

At O(ε2), proceeding as above, we now obtain

−W 1/2U0
ρ −W 0U1/2

ρ = 4(Q0µ3
ρ + Q1/2µ5/2

ρ + Q1µ2
ρ)ρ + 4Q04sµ

1 + 4Q1/24sµ
1/2, (4.2.22)

~J2 · ~n = −4Q0µ3
ρ − 4Q1/2µ5/2

ρ − 4Q1µ2
ρ, (4.2.23)

0 = −1
4
Q0[F 2

V − V 2
ρρ], (4.2.24)

µ2 = F 2
U − U2

ρρ, (4.2.25)

where F 2
U and F 2

V are the coefficients of ε2 in the Taylor expansion of FU (U, V ) and FV (U, V )
about (U0, V 0).

Treating equations (4.2.22) and (4.2.23) as we treated equations (4.2.16) and (4.2.17) earlier
and using (4.2.21), we obtain

4s µ1 = T.S.T.. (4.2.26)
With regard to equations (4.2.24) and (4.2.25), we may proceed as with equations (4.2.18)

and (4.2.19) and conclude that
µ2

ρ = 0,

which implies in conjunction with (4.2.20) and the results above that

−W 0(U0 − U∞) = 4Q0µ5/2
ρ + T.S.T., (4.2.27)

or, to be more precise,

−W 0(U0−U∞) = 4Q0µ5/2
ρ −W 0(U0(−ε−1/4)−U∞)− ~J3/2 ·~n|ρ=−ε−1/4 +44s µ1/2

∫ ρ

−ε−1/4

Q0 dρ.

(4.2.28)
Moreover, proceeding as earlier, we find that U2(ρ) is an even function of ρ and V 2(ρ) is an odd
function of ρ.

At O(ε5/2), it suffices to consider two of the four equations which govern at this level. Using
our results so far, these equations may be written as

µ5/2 = F
5/2
U − U5/2

ρρ + 2U0
ρ H3/2, (4.2.29)
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−V 0
ρ W 0 = −1

4
Q0[F 5/2

V − V 5/2
ρρ + 2V 0

ρ H3/2], (4.2.30)

where now F
5/2
U and F

5/2
V are the coefficients of ε5/2 in the Taylor expansions of FU (U, V ) and

FV (U, V ) about (U0, V 0). Dividing (4.2.30) by −1
4Q0 and taking the inner product of the

resultant system with (U0
ρ , V 0

ρ ) over the interval (−ε−1/4, ε−1/4) yields∫ ε−1/4

−ε−1/4

µ5/2U0
ρ dρ + W 0

∫ ε−1/4

−ε−1/4

4(V 0
ρ )2

Q(U0, V 0)
dρ = 2H3/2

∫ ε−1/4

−ε−1/4

{(U0
ρ )2 + (V 0

ρ )2} dρ. (4.2.31)

Integrating the first integral on the left hand side of the above expression by parts∫ ε−1/4

−ε−1/4

µ5/2U0
ρ dρ = {µ5/2(U0 − U∞)}|ε−1/4

−ε−1/4 −
∫ ε−1/4

−ε−1/4

µ5/2
ρ (U0 − U∞) dρ. (4.2.32)

We now demonstrate that∫ ε−1/4

−ε−1/4

µ5/2U0
ρ dρ = W 0

∫ ε−1/4

−ε−1/4

(U0 − U∞)2

4Q(U0, V 0)
dρ + TST., (4.2.33)

To verify (4.2.33), we first examine somewhat carefully the qualitative behavior of (U0(ρ), V 0(ρ)).
As in §4.1, we may rely on the approach of [9, Chapter 13] to show that for |ρ| > |ρ0|, where
ρ0 = O(1)

U0 − U∞ = CUe−f(ε)|ρ| + o(e−f(ε)|ρ|), V 0 − V∞ = CV e−f(ε)|ρ| + o(e−f(ε)|ρ|), (4.2.34)

where CU and CV are O(1), f(ε) = Θ1/2ec/2Θ, and c is the same constant that appeared in §2
to describe the location of the minimizers of F (u, v). In particular (4.2.34) implies that the first
term on the right hand side of (4.2.32) is T.S.T.. Note now that (4.2.28) implies that

µ5/2
ρ = −W 0

4Q0
(U0−U∞)+

W 0

4Q0
(U0(−ε−1/4)−U∞)+

1
4Q0

~J3/2 ·n|ρ=−ε−1/4−4sµ
1/2 1

Q0

∫ ρ

−ε−1/4

Q0.

Thus ∫ ε−1/4

−ε−1/4

µ5/2U0
ρ dρ = W 0

∫ ε−1/4

−ε−1/4

{
(U0 − U∞)2

4Q(U0, V 0)

}
dρ + A + B + C + T.S.T., (4.2.35)

where
(A) := W 0

4 (U0(−ε−1/4)− U∞)
∫ ε−1/4

−ε−1/4
U0−U∞

Q0 dρ,

(B) := 1
4
~J3/2 · n|ρ=−ε−1/4

∫ ε−1/4

−ε−1/4
U0−U∞

Q0 dρ,

(C) := −4sµ
1/2

∫ ε−1/4

−ε−1/4

{∫ ρ

−ε−1/4 Q0
}

U0−U∞

Q0 dρ.

By (4.2.34), (U0(−ε−1/4)−U∞) = T.S.T. and by matching with the outer solution it follows that
~J3/2 ·n|ρ=−ε−1/4 = T.S.T.. Moreover by (4.2.21), 4sµ

1/2 = T.S.T.. Also, by the assumptions in §2
on Q(u, v), it follows that max(u, v)∈B̄ |Q(u, v)| = O(1). Therefore supρ∈(−l(ε), l(ε)) |

∫ ρ

−ε−1/4 Q0 dρ| =
O(l(ε)), where l(ε) is algebraically large. Hence,

A + B + C = T.S.T., (4.2.36)

if we can demonstrate that ∫ ε−1/4

−ε−1/4

∣∣∣∣∣(U0 − U∞)
Q(U0, V 0)

∣∣∣∣∣ dρ ≤ C2(ε), (4.2.37)
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where C2(ε) has at most algebraic growth. This may be accomplished by showing that

Φ(ρ) :=

∣∣∣∣∣ U0 − U∞

Q(U0, V 0)

∣∣∣∣∣ ≤ C3, ρ ∈ (−∞, ∞), (4.2.38)

where C3 = O(1), and clearly by symmetry it suffices to demonstrate (4.2.38) for ρ ∈ (0, ∞).
By the assumptions on Q(u, v) given in (2.4) (optimal-where..), we have that

Φ(ρ) ≤ C4

∣∣∣∣∣ U0 − U∞

U0(1− U0)(1/2− V 0)(1/2 + V 0)

∣∣∣∣∣, ρ ∈ (0, ∞),

where C4 = O(1). And from the assumptions on the geodesics and the discussion in §2, we have
that for ρ ∈ (0, ∞), the function U0(ρ) stays uniformly bounded away from 0 and 1, V 0(ρ) is
uniformly bounded away from −1/2, and |1/2− V 0(ρ)| ≥ |V∞ − V 0(ρ)|. Therefore,

Φ(ρ) ≤ C5

∣∣∣∣∣U0 − U∞

1/2− V 0

∣∣∣∣∣ ≤ C5

∣∣∣∣∣U0 − U∞

V 0 − V∞

∣∣∣∣∣, ρ ∈ (0, ∞),

where C5 = O(1). Recalling the limiting behavior of (U0(ρ), V 0(ρ)) given in (4.2.34), a bound
of the form (4.2.38) now readily follows and (4.2.36) is obtained.

Thus ∫ ε−1/4

−ε−1/4

µ5/2U0
ρ dρ = W 0

∫ ε−1/4

−ε−1/4

{
(U0 − U∞)2

4Q(U0, V 0)

}
dρ + T.S.T.. (4.2.39)

Note that the bound on Φ(ρ) obtained above in conjunction with the estimate (4.2.34) also
implies that ∫ ε−1/4

−ε−1/4

{
(U0 − U∞)2

4Q(U0, V 0)

}
dρ =

∫ ε∞

−∞

{
(U0 − U∞)2

4Q(U0, V 0)

}
dρ + T.S.T..

Moreover, it is not difficult to use similar bounds as well as estimates for V 0
ρ of the form (4.1.28)

to obtain that ∫ ε−1/4

−ε−1/4

{
(V 0

ρ )2

4Q(U0, V 0)

}
dρ =

∫ ε∞

−∞

{
(V 0

ρ )2

4Q(U0, V 0)

}
dρ + T.S.T..

Therefore, it follows from (4.2.31) and (4.2.33) that to within transcendentally small terms

W 0

∫ ∞

−∞

{
(U0 − U∞)2

4Q(U0, V 0)
+

4(V 0
ρ )2

Q(U0, V 0)

}
dρ = 2H3/2

∫ ∞

−∞
{(U0

ρ )2 + (V 0
ρ )2} dρ.

In other words, to leading order
W 0 = cAPBH3/2, (4.2.40)

where

cAPB =
2

∫∞
−∞{(U

0
ρ )2 + (V 0

ρ )2} dρ∫∞
−∞

{
(U0−U∞)2

4Q(U0, V 0)
+ 4(V 0

ρ )2

Q(U0, V 0)

}
dρ.

(4.2.41)

We conclude this section by noting that (4.2.21) and (4.2.26) together imply that

4s µ = O(ε3/2). (4.2.42)
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Figure 2. A line of triple junctions where two IPBs and one APB meet.

Figure 3. An isosceles triangle in the plane normal to the line of triple junctions.

Remark 4.1. We shall again see that the limits of integrations in the above integrals may be
equally well taken to be ±l(ε), where l(ε) is any algebraically large function of ε which is o(ε−1),
and the resultant variation in the final results will be only T.S.T..

5. Triple junction conditions

In this section we show how the conditions at the triple junction line are obtained, primarily
outlining out how the analysis may be reduced to that which appears in [26].

5.1. Young’s law. To derive Young’s law to leading order, we introduce the stretched variable
η = x−m(t)

ε where m(t) denotes the location of the triple junction. A prism, P , is constructed
whose cross section is taken to be given by an isosceles triangle with base length proportional
to εβ and whose height is taken to be εα. See Figure 2. We shall assume that α = 2β, and
that 7/8 < β < 1. The triple junction line is assumed to pass normally through the median
plane of the prism, and the base of the isosceles triangle which lies in the median plane is taken
to be orthogonal to one of the three interfaces which meet along the triple junction line. An
orthonormal co-ordinate system η = (ζ, ξ, z) is constructed so that ζ is tangent at the triple
junction to the interface which intersects the base of the triangle and points outward and z is
tangent to the triple junction line at η = 0. See Figure 3.

We now reduce the analysis here to the analysis presented in [26, 3]. To do so, we write the
first two equations in (2.9) in terms of η = (ζ, ξ, z) and U = U(η), V = V (η),

ε7/2(Wt − ε−1mt · ∇ηV ) = −1
4
Q(U, V )[Fv −4ηV ], (5.1.1)

µ = Fu −4ηU. (5.1.2)
If time has been appropriately scaled in our problem, we may assume that Vt = O(1) and
mt = O(1). Moreover, assuming the spatial variation in U and V to be no more rapid in the
vicinity of the triple junction line than it is within the inner region, then ∇ηV = O(1). These
estimates allow us to conclude from (5.1.1) that

−1
4
Q(U, V )[Fv −4ηV ] = O(ε5/2). (5.1.3)

We consider now the implications of (5.1.3) on the size of the term in square brackets. Note
that according to §3, within the outer region Q = O(e−c/

√
ε) and Fv − 4ηV = O(ε1/2). And

within the inner regions, we have seen in §4.1−§4.2 that Q = O(1) and that Fv −4ηV is O(ε)
along IPBs and O(ε5/2) along APBs. If the behavior at the triple junction is not more singular
than elsewhere, the mildest assumption which is consistent with (5.1.3) and the above estimates
is that

Fv −4ηV = O(ε1/2). (5.1.4)
Note that stronger assumptions were made in [26], but (5.1.4) is more modest and suffices for
the analysis which follows.
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Multiplying (5.1.2) by Uξ and (5.1.4) by Vξ, then adding, integrating over P̃ where P̃ cor-
responds to the prism P after its dimensions have been stretched by ε−1, and using Gauss’
theorem, we obtain∫

∂P̃sides

{
[F − µU +

1
2
(U2

ζ + V 2
ζ )− 1

2
(U2

ξ + V 2
ξ )]êξ − (UζUξ + VζVξ)êζ

}
· n̂ dS

= A + B + C + D, (5.1.5)
where êζ and êξ denote unit vectors in the positive ζ and ξ directions respectively, n̂ denotes a
unit exterior normal to ∂P̃sides, and

A :=
[∫

∂P̃top

−
∫

∂P̃bottom

]
(UzUξ + VzVξ) dS,

B := O(ε1/2)
∫

P̃
Vξ dV,

C :=
∫

P̃
µξ U dV,

D := −1
2

∫
∂P̃sides

(U2
z + V 2

z ) êξ · n̂ dS

We now estimate the terms A, B, C, and D. One readily estimates that A ≤ sup
P̃
|(UξUz +

VξVz)z|Cεα+β−2, where Cεβ−1 represents the area of ∂P̃top. Assuming, as is the case in the inner
and outer solution, that the derivative of U and V normal to the interfaces is at most O(1), but
that the derivatives of U and V in directions tangent to the interfaces are expected to be at
most O(ε), and taking into account that the variables ξ, z have been scaled by ε−1, we obtain
that A = O(εα+β). Variation in the shape of the interface, which may be roughly estimated via
its curvature, has been taken into account here by taking α to be sufficiently small. As for B,
we may obtain the rough estimate that B = O(ε−5/2+α+2β). Assuming that µ = O(ε1/2) and
that µ exhibits no rapid variation, we see that C = O(ε−3/2+α+2β). Similar considerations to
those used in estimating A yield that D = O(εα+β). Thus,∫

∂P̃sides

{
[F−µU+

1
2
(U2

ζ +V 2
ζ )−1

2
(U2

ξ +V 2
ξ )]êξ−(UζUξ+VζVξ)êζ

}
·n̂ dS = O(ε−5/2+α+2β). (5.1.6)

Let G = G(ζ, ξ, z) denote the integrand in the integral in (5.1.6). Taylor expanding,

G(ζ, ξ, z) = G(ζ, ξ, 0) + zGz(ζ, ξ, ẑ(ζ, ξ)).

Therefore for z ∈ (−εα−1, εα−1), under the assumption that the variation in the z direction is
O(ε),

G(ζ, ξ, z) = G(ζ, ξ, 0)(1 +O(εα)).
Returning to (5.1.6), we find that

εα−1(1 +O(εα))
∫

∂T̃

{
[F − µU +

1
2
(U2

ζ + V 2
ζ )− 1

2
(U2

ξ + V 2
ξ )]êξ − (UζUξ + VζVξ)êζ

}
· n̂ dS

= O(ε−5/2+α+2β), (5.1.7)

where ∂T̃ denotes the perimeter of the isosceles triangle lying in the median plane of P̃ .
Note now that the integral on the left hand side of the above equation is precisely of the

form of the integral treated in [26, 3], hence in order to implement the analysis there, it remains
only to show than the integral of the left hand side is significantly larger that the error estimate
on the right hand side. However note that the gradient term (U2

ξ + V 2
ξ ) can be expected to
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be O(1) throughout the inner regions, so this term yields a contribution which is O(1). This
estimate is corroborated by the analysis in [26] which implies that this is precisely the size of
the integral on the left. In fact we can divide through both sides of (5.1.7) by εα−1(1 +O(εα))
to obtain an overall error term of O(ε1/4) if we take 7/8 < β < 1 so as to guarantee that
1/4 < (α + 2β − 5/2) − (α − 1). In fact we can obtain O(ε1/2−δ̃) accuracy for any 0 < δ̃ << 1
by taking 1 − δ̃/2 < β < 1. We remark that if we were to make a slightly stronger (and not
unreasonable) assumption on the size of B earlier, O(ε1/2) accuracy would be guaranteed.

We may now follow the steps in the analysis in [26] to conclude that to within the accuracy
cited above, Young’s law holds; i.e.,

sin φ1

σ1
=

sinφ2

σ2
=

sinφ3

σ3
, (5.1.8)

where for i = 1, 2, 3, φi denotes the angle opposite interface Γi and

σi :=
∫ ∞

−∞
[(U0

i )2ρ + (V 0
i )2ρ] dρ, (5.1.9)

where σi denotes the surface energy of Γi. In (5.1.9) (U0
i (ρ), V 0

i (ρ)) denotes the leading order
approximations to the inner solution along Γi. See Figure 3.

5.2. Balance of fluxes. We shall reduce the present analysis to the analysis which appears in
[26], employing the prisms P and P̃ and the variables η, U(η), V (η) which were introduced in
§5.1. In terms of these variables, we obtain as in [26] that

ε5/2(Ut − ε−1mt · ∇ηU) = ∇η · ~J.

Making the same scaling assumptions as in §5.1, integrating over P̃ , and using the divergence
theorem, ∫

∂P̃
n̂ · ~J = O(εα+2β−3/2). (5.2.1)

Estimates similar to those which we made for A in §5.1 yield that∫
∂P̃ top

n̂ · ~J +
∫

∂P̃ bottom

n̂ · ~J = O(εα+β+1/2). (5.2.2)

Using (5.2.2) and Taylor expanding about z = 0 as in §5.1, we may conclude that

εα−1(1 +O(εα))
∫

∂T̃
n̂ · ~J dS = O(εα+2β−3/2),

where ∂T̃ denotes the perimeter of the isosceles triangle which lies in the median plane of P̃ .
Dividing both side of the above equation by εα−1(1 +O(εα)), the analysis has been reduced to
that which appears in §5.2 of [26]. By considering the overall error estimate given here and the
steps undertaken in [26], this implies that for 7/8 < β < 1 to within O(ε1/2) accuracy,

0 =
3∑

i=1

Miτi · ∇µ
1/2
i . (5.2.3)

In (5.2.3), µ
1/2
i denotes the coefficient of ε1/2 in the perturbation expansion for µ along Γi and

τi denotes a unit tangent to Γi at m(t) pointing outwards from the triple junction which lies in
the median plane of P , and

Mi :=
∫ l(ε)

−l(ε)
Q(U0

i (ρ), V 0
i (ρ)) dρ,
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Figure 4. A curve along which an IBP or an ABP intersects the exterior bound-
ary of the domain, ∂Ω.

Figure 5. The intersection of a rectangle with Ω, in the plane normal to the
curve of intersections described in Figure 4

where l(ε) is any algebraically large function of ε which is o(ε−1) and (U0
i (ρ), V 0

i (ρ)) is again
the leading order approximation to the inner solution along Γi.

5.3. Continuity of the chemical potential. If we wish to consider solutions with some min-
imal regularity requirements, then it is physically reasonable to consider solutions for which the
chemical potential is continuous (Note, however, that continuity of the chemical potential does
not follow immediately even in one space dimension from the results in [10].). Continuity of the
chemical potential implies equality of the chemical potentials as evaluated on two IPBs which
meet at a triple junction line. More specifically, referring to (4.1.5), (4.1.20), and proceeding as
in [26], this means that

H−1/2|IPB1 + H−1/2|IPB2 = O(ε1/2), (5.3.1)

where IPB1 and IPB2 denote two IPBs meeting along a triple junction line and H−1/2|IPB1 ,

H−1/2|IPB2 refer to their (scaled) mean curvatures.

6. Conditions at the exterior boundary

We consider here the conditions which hold along a line of intersections where an interface Γ,
which may be either an IPB or an APB, intersects ∂Γ. The analysis here completely parallels
that which appears in §5 except that instead of a prism construction, we shall construct a
parallelopiped whose cross sectional dimensions are proportional to εβ and whose height is given
by εα. See Figure 4. We may assume as in §5 that 7/8 < β < 1 and α = 2β. We shall take
the median plane of the parallelopiped to be normal to the line of intersections. Moreover, we
shall assume that the midpoint of one of the sides of the parallelopiped is tangent to the line of
intersections, and we denote this point of tangency by m(t). The majority of the parallelopiped
will be taken to lie within Ω, and we denote by R its intersection with Ω. See Figure 5. Let us
introduce the stretched variable η = x−m(t)

ε and the coordinates η = (ζ, ξ), where ξ is parallel
to Γ and points outwards from Ω.

We proceed now as in §5.1, working first with the first two equations in (2.9), except that now
instead of multiplying by (Uξ, Vξ), we multiply by (∂τU, ∂τV ). Making estimates which parallel
those given in §5, we find that

φ =
π

2
(6.0.1)

to within the same accuracy as was obtained in §5.1.
Afterwards we consider the third equation in (2.9). By working with R and η and taking

steps which parallel those in §5.2 and those in §6.1 of [26], we may conclude that to within an
O(ε1/2) error,

n̂ · ∇µ1/2 = 0, (6.0.2)
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where n̂ denotes the unit exterior normal to ∂Ω at m(t) which lies in the median plane of R,
and µ1/2 denotes the coefficient of ε1/2 in the perturbation expansion for the chemical potential
along Γ. Recalling (4.1.20), we see that along IPBs, (6.0.2) may also be expressed as

n̂ · ∇H−1/2 = 0, (6.0.3)

where H−1/2 is the coefficient of ε−1/2 in the perturbation expansion for the mean curvature H
of the IPB.

7. Discussion

In this paper we have undertaken asymptotics for the AC/CH system in a bounded domain
Ω ⊂ R3 based on the assumptions that Θ = ε1/2, 1/2− ū = O(ε3/2, and that the mean curvature
of the IPBs and APBs are respectively O(ε−1/2) and O(ε3/2). The results of our asymptotic
analysis are summarized in Figure 6.

Figure 6. A schematic summary of the limiting equations of motion, to leading order.

In the outer region, according to our analysis, u and v are T.S.T. close to the global minimizers
of the homogeneous free energy, the mass flux ~j and the mobility Q are T.S.T., and the chemical
potential, µ, and Fu, Fv have regular perturbation expansions in terms of ε1/2.

To obtain an evolution equation for IPB motion, asymptotics were undertaken at levels O(ε−1)
through O(ε3/2). To leading order IPBs move by surface diffusion. Stated more precisely, the
normal velocity of the IPB is proportional to minus the Laplace-Beltrami operator acting on
H−1/2, where H−1/2 = Hε1/2 + o(ε1/2) is the leading order coefficient in the expansion for the
mean curvature of the IPB. See (4.1.26). The precise choice of the location of the mid-surface
of the inner region does not influence the equation of motion for IPBs to leading order.

To obtain an evolution equation for the APBs, asymptotics were undertaken at levels O(ε−1)
through O(ε5/2), and the mid-surface of the inner region was defined via symmetry considera-
tions. Our calculations gave that APBs move according to motion by mean curvature. In other
words, the normal velocity of the APB is proportional to H3/2 where H3/2 = Hε−3/2 + o(ε−3/2)
is the leading order coefficient in the expansion for the mean curvature of the APB. Moreover,
4sµ = 0 to O(ε3/2) accuracy. See (4.2.41) and (4.2.42).

At triple junction lines, we found in that Young’s law holds to O(ε1/2−δ̃) accuracy, for any
0 < δ̃ << 1. See (5.1.8). We also obtain that to O(ε1/2) accuracy, a balance of mass flux
condition holds and that continuity of the chemical potential implies that the mean curvatures
of two IPBs joining along a triple junction line should be equal and of opposite sign. See (5.2.3)
and (5.3.1).

When an IPB or an APB intersect with the exterior boundary of the domain ∂Ω, we found
that to within O(ε1/2−δ̃) accuracy for any 0 < δ̃ << 1, the intersections are normal and that to
within O(ε1/2) a no-flux condition holds. See (6.0.1) and (6.0.2),(6.0.3).

Analytical and qualitative properties for the limiting equations of motion will be discussed in
future publications.
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I. Appendix

Let us consider the equations

FUU Ũ + FUV Ṽ − Ũρρ = GU ,

FUV Ũ + FV V Ṽ − Ṽρρ = GV ,
(I.1)

where FUU := FUU (U0, V 0), FUV := FUV (U0, V 0), and FV V := FV V (U0, V 0), where (U0, V 0)
denotes either of the heteroclinic orbits referred to within the text with regard to APBs, and
GU (ρ) and GV (ρ) are arbitrary functions which belong to C(−∞, ∞) with finite limits at ±∞.
Note now that if we look for classical solutions to (I.1) with finite limits at ±∞, this implies
that at +∞,

FUU (∞)Ũ(∞) + FUV (∞)Ṽ (∞) = GU (∞),

FUV (∞)Ũ(∞) + FUU (∞)Ṽ (∞) = GV (∞).
(I.2)

Since matching implies that in the notation of §2, FUU (∞) = F 0
UU , FUV (∞) = F 0

UV , and
FV V (∞) = F 0

V V , and since F 0
UUF 0

V V − (F 0
UV )2 > 0 by (2.7), (I.2) may be solved to yield:

Ũ(∞) =
F 0

V V GU (∞)− F 0
UV GV (∞)

F 0
UUF 0

V V − (F 0
UV )2

and Ṽ (∞) =
−F 0

UV GU (∞) + F 0
V V GV (∞)

F 0
UUF 0

V V − (F 0
UV )2

. (I.3)

Remark I.1. Since it is readily verified that F 0
UU , F 0

UV , and F 0
V V are all O(ec/

√
ε), it follows

from (I.3) that if GU (∞) and GV (∞) are O(1), then Ũ(∞) and Ṽ (∞) are O(e−c/
√

ε). A simi-
lar argument demonstrates that Ũ(−∞) and Ṽ (−∞) are O(e−c/

√
ε). This, in conjunction with

matching reaffirms self-consistency of the asymptotics within the framework of the assumptions
made on u and v in the outer solution.

It follows from Theorem 2.2 and Lemma 5.1 in [31, Section 2] and (2.7) that we may rely on
the Fredholm alternative to conclude that there exists a unique classical solution to (I.1),(I.3)
which is orthogonal to the solutions of the null adjoint equation, which in the present context
may be taken as

FUU Ũ + FUV Ṽ − Ũρρ = 0,

FUV Ũ + FV V Ṽ − Ṽρρ = 0,
(I.4)

in conjunction with the boundary conditions:

Ũρ(±∞) = Ṽρ(±∞) = 0. (I.5)

It is readily verified that (U0
ρ , V 0

ρ ) constitutes a solution to (I.4)-(I.5), and it is not difficult to
demonstrate that there are no further solutions to (I.4)-(I.5) which are linearly independent of
(U0

ρ , V 0
ρ ).

Claim I.2. Let (U0, V 0) denote the heteroclinic orbit which connects the two ordered variants,
and let us assume that GU is even and GV is odd. Then the unique solution (Ũ , Ṽ ) to (I.1)-(I.3)
which is orthogonal to (U0

ρ , V 0
ρ ) satisfies

Ũ(ρ) = Ũ(−ρ), Ṽ (ρ) = −Ṽ (−ρ), for all ρ ∈ (−∞, ∞).

Proof. Let us decompose Ũ and Ṽ into their even (symmetric) and odd (anti-symmetric) parts

Ũ = ŨS + ŨA,

Ṽ = Ṽ S + Ṽ A,
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and write (Ũ , Ṽ ) as
(Ũ , Ṽ ) = (ŨS , Ṽ A) + (ŨA, Ṽ S).

Recalling that if (U0, V 0) denotes the heteroclinic orbit connecting two ordered variants, then
(see remarks below (4.2.15)) FUU (ρ) and FV V (ρ) are symmetric and FUV (ρ) is antisymmetric,
the equations to be satisfied by (ŨS , Ṽ A) can be found by separating out the appropriate even
and odd parts of (I.1)-(I.3). Namely,

FUU ŨS + FUV Ṽ A − ŨS
ρρ = GU ,

FUV ŨS + FV V Ṽ A − Ṽ A
ρρ = GV ,

(I.6)

in conjunction with the boundary conditions:

ŨS(±∞) = Ũ(±∞), Ṽ A(±∞) = Ṽ (±∞). (I.7)

But noting that the systems (I.1),(I.3) and (I.6)-(I.7) are in fact identical, it follows from the
Fredholm alternative that

Ũ = ŨS + kU0
ρ and Ṽ = Ṽ A + kV 0

ρ .

Since U0 is even and V 0 is odd, it follows that U0
ρ is odd and V 0

ρ is even. Therefore, implementing
the orthogonality normalization condition (Ũ , Ṽ ) ⊥ (U0

ρ , V 0
ρ ) (c.f. §4.1), we find that k must

vanish, which proves the Claim. �
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I. Figure Captions

Figure 1. The region B := {(u, v) ∈ R2 : 0 < u + v < 1, 0 < u− v < 1}.
Figure 2. A line of triple-junctions where two IPBs and one APB meet.
Figure 3. An isosceles triangle in the plane normal to the line of triple-junctions.
Figure 4. A curve along which an IBP or an ABP intersects the exterior boundary of the domain,
∂Ω.
Figure 5. The intersection of a rectangle with Ω, in the plane normal to the curve of intersections
described in Figure 4.
Figure 6. A schematic summary of the limiting equations of motion, to leading order.
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