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Abstract. In this paper, we focus on the thin film equation with lower order
”backwards” diffusion which can describe, for example, structure formation in
biofilms and the evolution of thin viscous films in the presence of gravity and
thermo-capillary effects. We treat in detail the equation

ut + {un(uxxx + νum−nux − AuM−nux)}x = 0,

where ν = ±1, 0 < n, m < M, and 0 ≤ A. Global existence of weak non-
negative solutions is proven when −2 < m − n, and A > 0 or ν = −1, and
when −2 < m − n < 2 if A = 0, ν = 1. From the weak solutions, we get
strong entropy solutions under the additional the constraint that m > n− 3/2
if ν = 1. A local energy estimate is obtained when 2 ≤ n < 3 under some
additional restrictions. Finite speed of propagation is proven for the case of
”strong slippage,” 0 < n < 2, when m > n/2 and ν = 1, based on local entropy
estimates, and for the case of ”weak slippage,” 2 ≤ n < 3, when m < n/2,
based on local entropy and energy estimates.
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1. Introduction

The thin film equation [20]

ut + {un(uxxx)}x = 0, n > 0, (1.1)

often needs to be augmented in modeling specific physical systems in order to take
into account the presence of additional physical effects. See [18] for a survey and
review. The systems which we wish to accommodate in the present paper include
equations for

(i) structure formation and the dynamics of biofilms [14]

ut + {u(1 − u)(uxxx + h′(u)ux)}x = 0, (1.2)

where h(u) = a(u2 − bu3), and a, b are positive constants,

(ii) the evolution of thin viscous films in the presence of gravity and thermo-
capillary effects

ut + {un(uxxx + um−nux − AuM−nux)}x = 0, (1.3)

where m, n, M, A are constants such that 0 ≤ A, 0 < n, m < M, and the perhaps
more accurate variant of (1.3) given by

ut + {un(uxxx + h′(u)ux)}x = 0, (1.4)

where h′(u) = u(1 + Bu)
−2

and B is a positive constant [18, 24, 19], as well as the
simpler equation

ut + {un(uxxx + um−nux)}x = 0, (1.5)

which models the evolution of thin viscous films in the presence of thermo-capillary
effects but without gravity.

(iii) An additional example in the spirit of the present paper is

ut + {un(uxxx + h′(u)ux)}x = 0, (1.6)

which describes (i) the evolution of a thin viscous film in the presence of attractive
polar forces if h(u) = −ae−u/b and a, b are positive constants, or (ii) the evolution of
a thin viscous film in the presence of attractive van der Waals forces if h(u) = Au−α,
where A < 0 is a (negative) Hamaker constant and α is a positive constant. See
[16, 17, 18].

To approach these different model equations, we shall focus on the equation

ut + {un(uxxx + νum−nux − AuM−nux)}x = 0, (1.7)

where ν = ±1, and n, m, M, A are constants such that 0 ≤ A, 0 < n, m < M, with
some further restrictions to be imposed in the sequel. Typical boundary conditions
are

ux = unuxxx = 0, x = ±a, (1.8)

and these boundary conditions are adopted here. All of the examples which have
been listed above may be written in this form directly, except for (1.4), (1.6 i) in
which

(a) h′(u) = u(1 + Bu)−2 and (b) h′(u) =
a

b
e−u/b,

respectively. Note that

0 <
u

(1 + Bu)2
<

1

B2u
, (1.9)
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0 <
a

b
e−u/b <

a

b
, (1.10)

for u ≥ 0, and hence (a), (b) have upper bounds of the form h′(u) = νum−n−AuM−n

with ν = 1, A = 0, and m−n = −1 and m−n = 0 respectively, which facilitate the
analysis of (1.4), (1.6 i). Our treatment of (1.7) can be generalized to encompass
(1.4) and (1.6 i) as well; comments in this direction appear as remarks which follow
the statement of our main results.

The term ”{un(νum−nux)}x,” with ν = +1 in (1.7), is often referred to as a
”backwards diffusion” term, since if one considers dynamics dominated by this term
alone

ut + {un(um−nux)}x = 0,

and one linearizes about uniform positive state, then the resultant dynamics is
given by the backwards (ill-posed) diffusion equation. Similarly, if ν = −1, the
term (un(νum−nux))x in (1.7) is often referred to as ”forward diffusion,” for obvious
reasons. We shall often refer to equation (1.7) with ν = +1 as the ”unstable case”
and to equation (1.7) with ν = −1 as the ”stable case,” since in the context of thin
films, (1.7) with ν = +1 models limiting attractive (or destabilizing) forces and
(1.7) with ν = −1 models limiting repulsive (or stabilizing forces).

While (1.7) has often been treated in the presence of forward or stabilizing
diffusion (see [8] and references therein)

ut + {un(uxxx − um−nux)}x = 0,

the backwards or unstable variant

ut + {un(uxxx + um−nux)}x = 0, (1.11)

has yet to be analyzed in depth. For example, existence and the finite speed of
propagation property were proven for (1.11) in [7], but subject to the constraint
that m ≥ 0. Similarly, destabilizing lower order terms were included in the proof
of existence and finite speed of propagation given in [12], but the analysis there
required the inclusion of stabilizing lower order terms as well. Certain properties of
the solutions of the thin film equation in the presence of lower order destabilizing
terms have been studied. For example, in Beretta [5], source type solutions with
compact support are shown to exist for 0 < n < 3, m = n + 2, and ν = ±1; these
source type solutions are C1 solutions such that unu′′′ and un+2u′ are differentiable.
There is by now a very rich literature on compactly supported self-similar solutions,
steady state solutions and their stability, and blow up, see e.g. [15],[23], [21] and
references therein. Notably [7, 23], for blow up to occur within the framework
of (1.7), it is necessary to require that A = 0, ν = −1, and m ≥ n + 2, with
m = 3 = n + 2 constituting a critical case when n = 1.

The focus of the present paper, however, is not on blow up, but rather on
conditions that guarantee existence, regularity, and finite speed of propagation.
As a first step in this direction, the existence of weak nonnegative solutions (see
Definition 1) is demonstrated in §2. This is accomplished by means of the following
energy estimate

sup
0≤t≤T

∫

Ω

u2
x +

∫ T

0

∫

Ω

un(uxxx + νum−nux − AuM−nux)2 dx dt ≤ C, (1.12)

where C is time independent and depends only on the problem parameters and the
initial conditions. The estimate (1.12) is demonstrated to hold for 0 < T < ∞,

3



when ν = ±1, 0 < n, −2 < m − n, m < M if A > 0, and m − n < 2 if ν = 1
and A = 0. Additionally, an entropy-like estimate is obtained based on a Gronwall
inequality for regularized solutions. It is the use of this Gronwall inequality, which
is explicitly depending on the regularization parameter, which allows us to control
lower order forcing terms which are more singular than those treated up to now.
These estimates, together with mass conservation,

∫

Ω

u(x, t) dx =

∫

Ω

u(x, 0) dx, (1.13)

implies global bounds from which existence of weak nonnegative solutions can then
be concluded using arguments which are now fairly standard, see Bernis & Friedman
[2], Giacomelli [10].

To obtain the existence of a strong (C1(Ω) for a.e. t > 0) solution, a local
entropy estimate is derived in §3. For the case ν = 1, the additional constraint
m− n > − 3

2 is imposed and the local entropy estimate obtained can be written as

1

α(α + 1)

∫

Ω

ζ4u1+α(x, T ) dx + A

∫

QT

ζ4uα+M−1u2
x+

c1

[

∫

P

ζ4uα+n−2γ+1(uγ)2xx +

∫

QT

ζ4uα+n−3u4
x

]

≤

c2

∫

QT

(|ζx|
4 + |ζζxx|

2)un+α+1 + c3

∫

QT

|(ζ3ζx)x|u
α+m+1+

c4

∫

QT

ζ4uα+2m−n+1 +
1

α(α + 1)

∫

Ω

ζ4u0
α+1(x) dx, (1.14)

and holds for certain α ∈ (max{−2m + n − 1, −m − 1}, 2 − n) \ {0, −1} and for
γ satisfying (3.8). For the case ν = −1, a similar estimate is obtained with no
additional restrictions. For both the cases, ν = ±1, the local entropy estimate
implies the global entropy estimate

c5

∫

ΩT

uα+n−3u4
x + c6

∫

ΩT

uα+n−1u2
xx ≤ c7T, (1.15)

for 0 < T < ∞. Positivity and strong solutions are implied by (1.15) following the
arguments of Beretta, Bertsch & Dal Passo [1]. We present a careful new refinement
of Theorem 3.1 from [1] (see Lemma 3.1 in §3), which clarifies the set of β for which
C1([−a, a]) regularity for almost every t > 0 is implied for u1/β(·, t) by the local
entropy estimates. A local energy estimate is proven for ν = ±1, 2 ≤ n < 3 under
the additional constraint that m > (2n − 2)/3 if 2 ≤ n ≤ 5/2 and m > n − 3/2 if
5/2 < n < 3.

In §4 and §5, we investigate sharp conditions for FSP, the finite speed propa-
gation property, for equation (1.1). For the ”standard” thin film equation (ν = 0,
A = 0), this property was proven by F. Bernis for 0 < n < 2 in [3], and then for
2 ≤ n < 3 in [4]. For equation (1.1) with ”forward” (normal) diffusion (ν = −1,
A = 0), conditions for FSP as well as sharp estimates for the speed of propagation
were obtained in [8] for the ”strong slippage” case (0 < n < 2) only. Here we study
the much more delicate case of backward diffusion, where the lower order diffusion
term ”encourages” the destruction of the FSP property for all values of m. Our
analysis makes use of some ideas from [11]. The proof given in §4 is for the ”strong
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slippage case” in which 0 < n < 2, and requires that m > n/2 if ν = 1. It is
based on the local entropy estimate from §3 for α positive and the Stampacchia
Lemma for systems. We demonstrate that if supp u0 ⊂ {x ≤ 0}, then there exists
a continuous function, s(t) satisfying s(0) = 0, and a positive time T0 such that
suppu(·, t) ⊂ [−a, s(t)], s(t) < a ∀ t < T0, and s(T0) = a. The proof in §5 is for
the ”weak slippage case” in which 2 < n < 3, and requires that m > n/2. It is
based on combining local entropy estimates for −1 < α < 0 with the local energy
estimates from §3, and again makes use of the Stampacchia Lemma for systems. It
is our conjecture that the restriction that m > n/2 when ν = 1 is sharp, and we
hope to investigate this point further in a later publication.

The outline of the paper is as follows. The existence of weak non-negative solu-
tions is proven in §2. Existence of strong energy-entropy solutions is demonstrated
in §3. Finite speed of propagation is proven in §4 for the case of weak slippage and
in §5 for the case of strong slippage.

2. Weak solutions

In this section, we follow Bernis & Friedman [2], relying on local parabolic
regularity theory [9, 10] to attain global existence.

Notation. Let Ω = (−a, a) where a ∈ (0, ∞) is arbitrary, and Qt = Ω × (0, t),
0 < t < ∞, and set Pt = Qt \ {u = 0 or t = 0}, Q = Q∞, P = P∞.

We shall assume that the initial conditions u0(x) satisfy

u0 ∈ H1(Ω), u0 ≥ 0, u0 ≡\ 0. (2.1)

Let us now consider the problem

(P)























ut + (un(uxxx + νum−nux − AuM−nux))x = 0, (x, t) ∈ QT ,

ux(±a, t) = 0, 0 ∈ (0, T ),

uxxx(±a, t) = 0 when u(±a, t) 6= 0, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ Ω̄,

where ν = ±1.
We remark that while we shall be looking for solutions on a finite interval, we

can always consider a parallel Cauchy problem obtained by extending the initial
conditions via periodicity and reflection. This will allow us, for example, to directly
implement generalized Bernis inequalities for nonnegative periodic functions, [11,
Lemma B.1].

Definition 1. A function u ∈ C0, 1/2, 1/8(Ω̄× [0, ∞)) ∩L∞([0, ∞); H1(Ω)) is said
to be a weak solution of (P) if:

(a) u ∈ C4, 1(P ), u ≥ 0,

(b) ux(x, t) = uxxx(x, t) = 0 when u(x, t) 6= 0, for (x, t) ∈ ∂Ω × (0, T ),

(c) J ≡ un(uxxx + νum−nux − AuM−nux) ∈ L2(P ),

(d) for all φ ∈ Lip(Ω̄ × (0, ∞)) with compact support, u satisfies:
∫

Q

u φt dxdt +

∫

P

un (uxxx + νum−nux − AuM−nux)φx dxdt = 0, (2.2)

(e) u(x, 0) = u0(x) for x ∈ Ω̄.
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Remark 2.1. The regularity on P, the positivity set, guarantees that the boundary
conditions (1.8) hold on {−a, a} ∩ P.

Given this definition, we may formulate the following

Theorem 1. If 0 < n, ν = ±1, A ≥ 0, −2 < m − n, m < M if A > 0, and
m − n < 2 if ν = 1 and A = 0, then there exists a solution to (P) in the sense of
Definition 1 for arbitrary initial datum, u0(x), satisfying (2.1).

The approach here is to find a weak solution to (P) as the limit of a subsequence
of smooth positive solutions of a regularized problem, (Pǫ), satisfying regularized
initial conditions, u0ǫ. We shall require that for λ ∈ (0, 1), θ ∈ (0, 2/5], u0ǫ satisfies

u0ǫ ∈ C4, λ(Ω̄), u′
ǫ0(±a) = u′′′

ǫ0(±a) = 0,

u0 + ǫθ ≤ u0ǫ ≤ u0 + 1, uǫ0 → u0 in H1((−a, a)) as ǫ → 0.
(2.3)

We note that it is possible at this point to pass to a periodic variant of this
problem by extending the initial conditions by reflection then imposing periodicity.

We define as in [2], fǫ(s) = |s|n+4

ǫ|s|n+s4 . We shall adopt the convention, here and in

the section which follows, that ci, di denote positive constants that are independent
of ǫ, and Ci(t) denotes a positive increasing function defined on (0, ∞) that is
independent of ǫ; ci, di, Ci(t) may depend on Ω, u0, and the problem parameters,
and their value may change from line to line.

Proof. We consider the approximating Cauchy problem (Pǫ)

(Pǫ)











ut + {fǫ(u)(uxxx + νum−nux − AuM−nux)}x = 0, (x, t) ∈ QT ,

ux(±a, t) = uxxx(±a, t) = 0, t ∈ (0, T ),

u(x, 0) = u0ǫ(x), x ∈ Ω̄.

Problem (Pǫ) possess a unique maximal positive solution, uǫ, such that uǫ ∈
C4, λ, λ/4 (Ω̄ × [0, τǫ)), τǫ > 0, see [9, Theorem 6.3, p 302] as well as the remark
following the proof given there. That the periodic variant would maintain the pe-
riodicity and reflection properties of u0ǫ can be seen by translating and reflecting
the solution, and invoking uniqueness of solutions to the Cauchy problem (Pǫ).

We now obtain a global energy estimate. By testing (Pǫ) with φ ≡ 1 and
recalling (2.1), (2.3), it follows that

0 < uǫ(t) = u0ǫ ≤ u0 + 1, (2.4)

where v := |Ω|−1
∫

Ω v. Note that (2.4) holds also for similarly defined approximating
solutions for the exceptional cases, (1.4), (1.6 i).

Let ν = ±1, and set

h(s) =















νsm−n+1

m−n+1 − A sM−n+1

M−n+1 , m, M 6= {n− 1},

ν ln s − A sM−n+1

M−n+1 , m = n − 1,

νsm−n+1

m−n+1 − A ln s, M = n − 1,
6



and

H(s) =















νsm−n+2

(m−n+2)(m−n+1) −
AsM−n+2

(M−n+2)(M−n+1) , m, M 6= {n − 1},

ν(s ln s − s) − AsM−n+2

(M−n+2)(M−n+1) , m = n − 1,

νsm−n+2

(m−n+2)(m−n+1) − A(s ln s − s), M = n − 1.

Testing (Pǫ) with −uǫxx − h(uǫ), we obtain

∫

Ω

[1

2
uǫ

2
x − H(uǫ)

]

+

∫

Qt

fǫ(uǫ)(uǫxxx + h′(uǫ)uǫx)2 =

∫

Ω

[1

2
u0ǫ

2
x − H(u0ǫ)

]

. (2.5)

If ν = 1, A = 0, and −1 ≤ m − n < 2, we may use the Gagliardo-Nirenberg
inequality

||u||Lp(Ω) ≤ c1||ux||
1/2
L2(Ω)||u||

1/2
L1(Ω) + c2||u||L1(Ω), 1 < p < 4,

in conjunction with positivity of solutions and (2.4), to conclude that
∫

Ω

H(uǫ)(t) ≤
1

4

∫

Ω

uǫ
2
x + c3

(

∫

Ω

uǫ

)c4

=
1

4

∫

Ω

uǫ
2
x + c5. (2.6)

If the restrictions on the parameters stated in Theorem 1 hold, with the additional
restriction that −2 < m − n < −1 if ν = 1 and A = 0, then by Young’s inequality
and (2.4),

∫

Ω

H(uǫ) ≤ c6(u0 + 1) = c7. (2.7)

From (2.5), (2.6), (2.7), we may conclude that under the conditions on the
parameters stated in Theorem 1

1

4

∫

Ω

uǫ
2
x(t) +

∫

Qt

fǫ(uǫ)(uǫxxx + νuǫ
m−nuǫx − Auǫ

M−nuǫx)2 ≤ c8. (2.8)

(The case m−n = 2, A = 0 with certain additional side constraints is also possible
to treat, see e.g. [7].)

From (2.4), (2.8), we obtain that

||uǫ||L∞(0, t; H1(Ω)) ≤ c9. (2.9)

Noting that ut = −Jx, and since by (2.8)

||f1/2
ǫ (uǫxx + h(uǫ))x ||L2(Qt) ≤ c8,

it follows by (2.9) that

||ut||L2(0, t; H−1(Ω)), ||J ||L2(Qt) ≤ c10.

As in [2], we obtain the uniform Hölder estimate

||uǫ||C0, 1/2, 1/8(Qt)
≤ c11,

where c11 is time independent.
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Remark 2.2. It is also possible to implement the above discussion when un is
replaced by f(u) in (P), for ”suitable” f(u) ∈ C(0, ∞) → R

+, and to work with [6]

fǫ(u) =
f(u)u4

ǫf(u) + u4
,

where ”suitable” is defined more or less stringently depending on whether A = 0 or
A > 0.

We now demonstrate roughly as in [2] that uǫ ≥ 4σ > 0 in Ω̄ × [0, τǫ] for some
σ > 0. On [0, τǫ), we know that uǫ(x, t) > 0. Hence we may multiply the equation
in (Pǫ) by G′

ǫ(uǫ), where

Gǫ(s) = −

∫ Ã

s

gǫ(r) dr, gǫ(s) = −

∫ Ã

s

dr

fǫ(r)
,

where Ã > max |uǫ| for all small positive ǫ, and integrate to obtain
∫

Ω

Gǫ(uǫ(t)) +

∫

Qt

[uǫ
2
xx − (νuǫ

m−n − Auǫ
M−n)uǫ

2
x] =

∫

Ω

Gǫ(uǫ(0)). (2.10)

If m − n 6= −1, then using (2.10) and integrating the term −
∫

QT
νum−n

ǫ uǫ
2
x by

parts,
∫

Ω

Gǫ(uǫ(t)) +

∫

Qt

uǫ
2
xx + A

∫

Qt

uǫ
M−nuǫ

2
x

≤
1

2

∫

Qt

uǫ
2
xx +

1

2(m − n + 1)2

∫

Qt

uǫ
2m−2n+2 +

∫

Ω

Gǫ(uǫ(0)). (2.11)

And therefore recalling (2.9)
∫

Ω

Gǫ(uǫ(t)) +

∫

Qt

1

2
uǫ

2
xx ≤ c12

∫

Qt

uǫ
−2 + C1(t) +

∫

Ω

Gǫ(uǫ(0)). (2.12)

If m − n = −1, the term (lnuǫ)
2 replaces

u2m−2n+2
ǫ

(m−n+1)2 in (2.11), and noting that

ln2(s) ≤ c13s
−2 + c14, for 0 < s < Ã < ∞,

the estimate (2.12) again follows.
Noting that for 0 < s,

ǫs−4 ≤
1

fǫ(s)
,

it now follows easily that
∫

Ω

Gǫ(uǫ) +

∫

Qt

1

2
uǫ

2
xx ≤

c15

ǫ

∫

Qt

Gǫ(uǫ(t)) + C2(t) +

∫

Ω

Gǫ(uǫ(0)).

Hence by Gronwall’s inequality,
∫

Ω

Gǫ(uǫ(t)) ≤ Dǫ(t) < ∞, t ∈ [0, τǫ). (2.13)

where for all 0 < ǫ ≪ 1, Dǫ(t) is an increasing function defined on (0, ∞). As in
[2], (2.13) can be seen to imply positivity.
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The solution, uǫ(x, t), may now be extended to exist globally, as in [2, 10]. Select

f̃ǫ(s) ∈ C2(R) such that f̃ǫ(s) ≡ fǫ(s) for s ≥ 2σ, and f̃ǫ(s) ≥ fǫ(σ) for all s ∈ R.
Thus uǫ(x, t) also constitutes a weak solution of

uǫt + {f̃ǫ(uǫ)(uǫxxx + h′(uǫ)uǫx)}x = 0,

satisfying the same initial and boundary conditions as before. For xǫ ∈ [−a, a), set

vǫ(x, t) =

∫ x

xǫ

uǫ(ξ, t) dξ −

∫ t

0

f̃ǫ(uǫ(xǫ, θ)){uǫxxx + h′(uǫ)uǫx}(xǫ, θ) dθ.

The regularity and positivity of uǫ(x, t) imply that vǫ(x, t) is well defined in D =
Ω̄ × (0, τǫ) and satisfies

{

vǫt + f̃ǫ(uǫ(x, t)){vǫxxxx + νuǫ
m−nvǫxx − Auǫ

M−nvǫxx} = 0,

vǫ(± a, t) = vǫxx(± a, t) = 0.
(2.14)

Using parabolic regularity results for vǫ, enhanced regularity may be obtained for
uǫ and hence for the uǫ-dependent coefficients in (2.14). Returning again to (2.14),
additional regularity is obtained for vǫ, which allows us to conclude that uǫ ∈
C4+λ(Ω× [0, τǫ]). Therefore the solution may be continued, in contradiction to the
assumed maximality of the solution.

One may now argue as in [2], using (2.4), (2.8) to conclude that there exists a
sequence uǫk converging uniformly to a solution of (P) on QT for all 0 < T < ∞ as
ǫk → 0. �

Remark 2.3. The existence of weak solutions for the exceptional cases, (1.4),
(1.6 i), with h′(u)ux replacing νum−nux − AuM−nux in accordance with (a),(b) in
Definition 1, can be easily concluded for arbitrary initial data satisfying (2.1), (2.3).
This may be accomplished by verifying that (2.6) holds for (1.4), that (2.7) holds
for (1.6 i), and that (2.12) holds for both (1.4) and (1.6 i), then arguing as above.

3. Strong entropy-energy solutions

To get strong entropy-energy solutions, we derive entropy estimates and use the
approach of Beretta, Bertsch & Dal Passo [1] to get strong solutions, then derive an
energy estimate. In accordance with the conditions in Theorem 1, we shall assume
throughout this section that ν = ±1, 0 ≤ A, 0 < n, −2 < m − n < M − n, and
m − n < 2 if A = 0, ν = 1. Moreover, in referring to solutions of (P) and (Pǫ), we
shall assume that u0 satisfies (2.1) and u0ǫ satisfies (2.3). Some further restrictions
shall be introduced in the sequel.

Before deriving the entropy estimates, we present a lemma, which is essentially
a refinement of Theorem 3.1 in [1], which is useful for concluding regularity results
from entropy estimates.

Lemma 3.1. Let u(x, t) be a weak solution of (P) obtained as the limit of a
subsequence of solutions uǫ(x, t) of (Pǫ). Suppose that 0 < n and that for some
α ∈ (1

2 − n, 2 − n), there exist constants c1, c2, and δ > 0 which do not depend on
ǫ, such that

∫

QT

uα+n−2γ+1
ǫ (uγ

ǫ )2xx ≤ c1, (3.1)

9



and
∫

QT

uα+n−3
ǫ uǫ

4
x ≤ c2, (3.2)

for all γ satisfying
1 + n + α

3
≤ γ ≤

1 + n + α

3
+ δ, (3.3)

then u1/β(·, t) ∈ C1([−a, a]) for all β ∈ (0, 3
n+α+1 ) for almost every t > 0.

Proof. For any 0 < β < 3
n+α+1 , we may choose γ satisfying (3.3) such that 0 <

βγ < 1. Setting q = 4 − (1+n+α)
γ and arguing as in the proof of [1, Lemma 3.1], it

follows from (3.1),(3.2) that for almost every t > 0 there exists a C1(t) < ∞ such
that

if u(y, t) = 0 for some y ∈ [−a, a], then

|(uγ)x|
(4−q)/q(x, t) ≤ C1(t)|x − y|(q−1)/q for x ∈ [−a, a]. (3.4)

From (3.4), we find by integrating that for almost every t > 0, there exists a
C2(t) < ∞ such that

if u(y, t) = 0 for some y ∈ [−a, a], then

u(x, t) ≤ C2(t)|x − y|
3

α+n+1 for x ∈ [−a, a]. (3.5)

Since 0 < βγ < 1, we may combine (3.5) and (3.4) to obtain that for almost
every t > 0, there exists a C3(t) < ∞ such that

if u(y, t) = 0 for some y ∈ [−a, a], then for x ∈ [−a, a],

|(u1/β)x(x, t)| ≤ C3(t)|x − y|
3

4−q |x − y|
q−1
4−q ≤ C3(t)|x − y|µ, (3.6)

where µ = 1
β

3
α+n+1 − 1 > 0 and C3(t) < ∞. �

From Lemma 3.1, two simple but useful corollaries follow.

Corollary 3.2. Let u(x, t) be a weak solution of (P) obtained as the limit of a
subsequence of solutions uǫ(x, t) of (Pǫ). Suppose that 0 < n and that for some
α ∈ (1

2 − n, 2 − n), there exist constants c1, c2, and δ > 0, which do not depend
on ǫ, such that for all γ satisfying (3.3), the estimates (3.1) and (3.2) hold. Then
u(·, t) ∈ C1([−a, a]) for almost every t > 0.

Proof. Note that if α ∈ (1
2 −n, 2−n), then 3

α+n+1 ∈ (1, 2). Hence 1 ∈ (0, 3
n+α+1 ).

�

Remark 3.3. Note that if u(·, t) ∈ C1([−a, a]) for almost every t > 0, then u(x, t)
is a strong solution in the sense of Bernis & Friedman [2].

Corollary 3.4. Let u(x, t) be a weak solution of (P) obtained as the limit of a
subsequence of solutions uǫ(x, t) of (Pǫ). Let 0 < n and let Ψ denote a subset of
(1
2 − n, 2 − n). If for all α ∈ Ψ, there exist constants c1, c2, and δ > 0, which do

not depend on ǫ, such that for all γ satisfying (3.3), the estimates (3.1) and (3.2)
hold, then u1/β(·, t) ∈ C1([−a, a]) for all β ∈ (0, 3

n+inf Ψ+1 ) for almost every t > 0.

Proof. The result is an immediate consequence of Lemma 3.1. �
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We now derive our primary entropy estimates.

Let

ζ ∈ C4([−a, a]) with support in (−a, a) and ζ ≥ 0, (3.7)

or ζ = 1, and let

Gǫ(s) =
ǫsα+n−3

(α + n − 4)(α + n − 3)
+

sα+1

α(α + 1)
,

where α ∈ (1/2−n, 2−n)\{0, −1}. Using ζ4G′
ǫ(uǫ) to test (Pǫ) on QT = Ω×(0, T ),

0 < T < ∞, and treating the terms which also appear in the classical thin film
equation as they were treated in [1, 8], we obtain that for any γ satisfying

t + 1 −
√

(t − 2)(1 − 2t)

3
< γ <

t + 1 +
√

(t − 2)(1 − 2t)

3
, (3.8)

where t = α + n, there exist positive constants, c3, c4, which do not depend on ǫ,
such that
∫

Ω

ζ4Gǫ(uǫ(x, T )) dx+

c3

[

∫

QT

ζ4uǫ
α+n−2γ+1(uγ

ǫ )2xx +

∫

QT

ζ4uǫ
α+n−3uǫ

4
x

]

≤

∫

Ω

ζ4Gǫ(u0ǫ(x)) dx + c4

∫

QT

(|ζx|
4 + |ζζxx|

2)un+α+1
ǫ + I, (3.9)

where gǫ(uǫ) := G′
ǫ(uǫ), and

I := −

∫

QT

ζ4gǫ(uǫ){fǫ(uǫ)(νuǫ
m−nuǫx − Auǫ

M−nuǫx)}x.

Integrating I by parts,

I =

∫

QT

ζ4g′ǫ(uǫ)fǫ(uǫ)(νuǫ
m−nuǫ

2
x − Auǫ

M−nuǫ
2
x)+

∫

QT

4ζ3ζxgǫ(uǫ)fǫ(uǫ)(νuǫ
m−nuǫx − Auǫ

M−nuǫx) := Ia + Ib.

The term Ia may be written as

Ia =

∫

QT

ζ4(νuǫ
α+m−1 − Auǫ

α+M−1)uǫ
2
x. (3.10)

For ν = −1, note that both terms in (3.10) are non-positive. For ν = +1, we
estimate

Ia ≤ δ

∫

QT

ζ4uǫ
α+n−3uǫ

4
x + c5(δ)

∫

QT

ζ4uǫ
α+2m−n+1−

A

∫

QT

ζ4uǫ
α+M−1uǫ

2
x, (3.11)

where δ > 0 is arbitrary.
With regard to Ib, integration by parts gives that

Ib = −

∫

QT

4(ζ3ζx)x

[

∫ uǫ

0

gǫ(s)fǫ(s)[νsm−n − AsM−n] ds
]

.

11



As in [1] we find that

|gǫ(uǫ)fǫ(uǫ)| ≤ c6u
n+α
ǫ .

Thus, recalling (2.9) and that M > m,

Ib ≤ c7

∫

QT

|(ζ3ζx)x|u
α+m+1
ǫ . (3.12)

If ν = −1, we may combine the estimates on Ia and Ib to obtain

∫

Ω

ζ4Gǫ(uǫ(x, T )) dx+

c3

[

∫

QT

ζ4uǫ
α+n−2γ+1(uγ

ǫ )2xx +

∫

QT

ζ4uǫ
α+n−3uǫ

4
x

]

+

∫

QT

ζ4uα+m−1
ǫ uǫ

2
x + A

∫

QT

ζ4uα+M−1
ǫ uǫ

2
x ≤

c4

∫

QT

(|ζx|
4 + |ζζxx|

2)un+α+1
ǫ + c7

∫

QT

|(ζ3ζx)x|u
α+m+1
ǫ +

∫

Ω

ζ4Gǫ(u0ǫ(x)) dx. (3.13)

Similarly, if ν = +1, the estimates yield

∫

Ω

ζ4Gǫ(uǫ(x, T )) dx + A

∫

QT

ζ4uǫ
α+M−1uǫ

2
x+

c8

[

∫

QT

ζ4uǫ
α+n−2γ+1(uγ

ǫ )2xx +

∫

QT

ζ4uǫ
α+n−3uǫ

4
x

]

≤

c4

∫

QT

(|ζx|
4 + |ζζxx|

2)un+α+1
ǫ + c7

∫

QT

|(ζ3ζx)x|u
α+m+1
ǫ

+ c5

∫

QT

ζ4uǫ
α+2m−n+1 +

∫

Ω

ζ4Gǫ(u0ǫ(x)) dx. (3.14)

To obtain bounds from (3.13), (3.14), we impose certain conditions on α and on
the initial data.

Remark 3.5. Suppose that u0 satisfies (2.1) and 0 < n < 3. Defining

α∗ =

{

1
2 − n, 0 < n ≤ 3

2 ,

−1, 3
2 < n < 3,

(3.15)

we see that α∗+1 ≥ 0 and α∗ ∈ [12−n, 2−n). Hence, there exists α∗ ∈ (1
2−n, 2−n)

such that for all α ∈ [α∗, 2 − n),
∫

Ω ζ4uα+1
0 (x) dx < +∞ if α 6= −1,

∫

Ω ζ4| lnu0(x)| dx < +∞ if α = −1,

for all ζ ∈ C4([−a, a]).

In consideration of the above remark, we define
12



Definition 2. Suppose that u0 satisfies (2.1), and ζ ∈ C4([−a, a]). Then we define
α0(ζ) ≡ inf α such that α > 1

2 − n and
∫

Ω ζ4uα+1
0 (x) dx < +∞ if α 6= −1,

∫

Ω
ζ4| lnu0(x)| dx < +∞ if α = −1.

Note that Remark 3.5 and the definition of α0(ζ) imply that if 0 < n < 3, then

1

2
− n ≤ α0(ζ) ≤ α∗ < 2 − n. (3.16)

The theorem below with regard to the stable case follows essentially from [1, 8],
but is included for the sake of completeness.

Theorem 2. (The stable case.) Suppose that ν = −1, 0 ≤ A, 0 < n, −2 < m−n,
with m < M if A > 0.

i) Let β ∈ (0, β0) where β0 = 3
n+α0+1 and α0 = α0(ζ = 1), and suppose that

α0 < 2 − n. Then u1/β(·, t) ∈ C1([−a, a]) for almost every t > 0.

ii) Let ζ satisfy (3.7), α0 = α0(ζ), and suppose that α0 < 2 − n. Then, for any
α ∈ (max{α0,−m − 1}, 2 − n)/{0,−1} and for any γ satisfying (3.8),

1

α(α + 1)

∫

Ω

ζ4u1+α(x, T ) dx+

c1

[

∫

P

ζ4uα+n−2γ+1(uγ)2xx +

∫

QT

ζ4uα+n−3u4
x

]

+

[
∫

QT

ζ4uα+m−1u2
x + A

∫

QT

ζ4uα+M−1u2
x

]

≤

c2

∫

QT

(|ζx|
4 + |ζζxx|

2)un+α+1 + c3

∫

QT

|(ζ3ζx)x|u
α+m+1+

1

α(α + 1)

∫

Ω

ζ4u0
α+1(x) dx. (3.17)

Proof. Part i) follows by setting ζ = 1 in (3.13), then implementing Lemma 3.1.
Part ii) follows easily from (3.13) by letting ǫ → 0 and noting that α + m + 1 and
α + n + 1 are positive in the indicated parameter range. �

Remark 3.6. It follows from (3.16) that

β0 ≥

{

2, 0 < n ≤ 3
2 ,

3
n , 3

2 < n < 3.
(3.18)

These are the bounds which were given in [1].

Theorem 3. (The unstable case.) Let ν = 1, 0 ≤ A, 0 < n, − 3
2 < m − n,

m − n < 2 if A = 0, and m < M if 0 < A.

i) Let α0 = α0(ζ ≡ 1), α1 = max{α0, −2m+n−1}, and β1 = 3
n+α1+1 , and suppose

that α0 < 2 − n. Then u1/β(·, t) ∈ C1([−a, a]), for all β ∈ (0, β1) for almost every
t > 0.
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ii) For any ζ satisfying (3.7), let α0 = α0(ζ) and α2 = max{α0, −2m+n−1, −m−
1}, and suppose that α0 < 2 − n. Then, for any α ∈ (α2, 2 − n)/{0,−1} and for
any γ satisfying (3.8),

1

α(α + 1)

∫

Ω

ζ4u1+α(x, T ) dx + A

∫

QT

ζ4uα+M−1u2
x+

c1

[

∫

P

ζ4uα+n−2γ+1(uγ)2xx +

∫

QT

ζ4uα+n−3u4
x

]

≤

c2

∫

QT

(|ζx|
4 + |ζζxx|

2)un+α+1 + c3

∫

QT

|(ζ3ζx)x|u
α+m+1+

c4

∫

QT

ζ4uα+2m−n+1 +
1

α(α + 1)

∫

Ω

ζ4u0
α+1(x) dx. (3.19)

Proof. To prove part i), note that α1 ∈ (1
2 −n, 2−n), α1 ≥ α0, α1 +2m−n+1 ≥ 0,

then implement Lemma 3.1 with ζ = 1. Part ii) follows by noting that α2 ∈
(1
2 − n, 2− n), α > α0, α + m + 1 > 0, and α + 2m− n + 1 ≥ 0, then letting ǫ → 0

in (3.14). �

Remark 3.7. The results given in Theorem 3 also hold for the exceptional cases
(1.4), (1.6 i), with A = 0 and with m − n assuming the values m − n = −1 and
m−n = 0, respectively. This can be easily demonstrated by following the arguments
above, once one notices that estimates (3.11), (3.12) also hold for (1.4), (1.6 i)
when the value of m − n is taken as −1 or 0, respectively, by utilizing the bounds
(1.9), (1.10).

Remark 3.8. Note that if 0 < n < 3, then Corollary 3.2 and Remarks 3.3 and 3.5
imply that the solutions obtained in Theorems 2 and 3 are strong solutions in the
sense of Bernis & Friedman [2].

In the case of ”strong slippage,” in which 0 < n < 2, the local entropy estimates
provided in Theorems 2, 3 can be used to prove the finite speed propagation prop-
erty for the strong solutions obtained there; see §4. However, in the case of ”weak
slippage” in which

2 ≤ n < 3, (3.20)

these local entropy estimates are insufficient. In this latter case, to demonstrate the
finite speed of propagation property, we shall rely on certain local energy estimates,
which we now derive.

By testing the equation in the approximating problem, (Pǫ), with −(ζ6uǫx)x,
we easily deduce that
∫

Ω

ζ6

2
|uǫx(x, T )|2 dx +

∫

QT

ζ6fǫ(uǫ)|uǫxxx|
2 =

−

∫

QT

fǫ(uǫ)uǫxxx[2uǫxx(ζ6)x + uǫx(ζ6)xx]−

∫

QT

fǫ(uǫ)(νum−n
ǫ uǫx − AuM−n

ǫ uǫx)(uǫxζ6)xx+

∫

Ω

ζ6

2
|u0ǫx(x)|2 dx. (3.21)
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Assuming (3.20) and noting (3.15), (3.16), it is easy to check that in Part ii) of
Theorem 2, max{α∗, −m− 1} < 0, and in Part ii) of Theorem 3, max{α∗, −2m +
n− 1, −m− 1} < 0. Hence if n satisfies (3.20), α may be chosen to be fixed and to
satisfy

−1 < α < 0, (3.22)

in addition to satisfying the constraints indicated in Part ii) of either theorem, for
arbitrary ζ satisfying (3.7) or ζ = 1. This choice for α suffices for proving the finite
speed of propagation property for the case of weak slippage, although potentially
local energy inequalities could be derived for a wider set of values of α.

For α satisfying (3.22), we have due to (1.13)

∫

Ω

uǫ(x, T )1+α dx ≤ |Ω|−α

(
∫

Ω

uǫ(x, T ) dx

)1+α

=

|Ω|−α

(
∫

Ω

u0ǫ(x) dx

)1+α

≤ d1. (3.23)

Setting ζ = 1 in (3.13) and employing (2.3),(3.23), we obtain the following inequal-
ity when ν = −1,

c3

[

∫

QT

uα+n−2γ+1
ǫ (uγ

ǫ )2xx +

∫

QT

uα+n−3
ǫ uǫ

4
x

]

+

∫

QT

(uα+m−1
ǫ + Auα+M−1

ǫ )uǫ
2
x ≤

∫

Ω

Gǫ(u0ǫ(x)) dx + d2 ≤ d3. (3.24)

Similarly, setting ζ = 1 in (3.14), employing (2.3),(3.23), and noting that the as-
sumptions on α imply that α > α2 ≥ −2m+n−1, we obtain the following inequality
when ν = 1,

c8

[

∫

QT

uα+n−2γ+1
ǫ (uγ

ǫ )2xx +

∫

QT

uα+n−3
ǫ uǫ

4
x

]

+ A

∫

QT

uα+M−1
ǫ uǫ

2
x ≤

∫

Ω

Gǫ(u0ǫ(x)) dx + c5

∫

QT

uα+2m−n+1
ǫ + d4 ≤ d5. (3.25)

Next we pass to the limit ǫ → 0 in (3.21). First, setting ζ = 1 in (3.21) yields
that for any δ > 0,

2−1

∫

Ω

|uǫx(x, T )|2 dx +

∫

QT

fǫ(uǫ)|uǫxxx|
2 ≤ 2−1

∫

Ω

|u0ǫx|
2 dx+

(1 + A| sup uǫ|
M−m)

∫

QT

fǫ(uǫ)u
m−n
ǫ |uǫx||uǫxxx| ≤ 2−1

∫

Ω

|u0ǫx|
2 dx+

δ

∫

QT

fǫ(uǫ)|uǫxxx|
2 +

∫

QT

uα+n−3
ǫ uǫ

4
x + c(δ)

∫

QT

u4m−2n−(α+n)+3
ǫ . (3.26)

Suppose that

4m − 2n − (α + n) + 3 ≥ 0, (3.27)

then setting δ = 1/2 in (3.26) and using the estimates (3.24), (3.25), we deduce
that

∫

Ω

|uǫx(x, T )|2 dx +

∫

QT

fǫ(uǫ)|uǫxxx|
2 < d6. (3.28)
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Remark 3.9. In the context of the assumptions of Theorem 2, when n satisfies
(3.20), m > n − 2 ≥ 0, hence max{α∗, −m − 1} = α∗ = −1. Thus for arbitrary
initial data satisfying (2.1),(2.3), (3.27) is satisfied for some admissible α, if

m −
3

4
n ≥ −1,

which is stronger than the previous constraint, m − n > −2.
In the context of the assumptions of Theorem 3, when n satisfies (3.20), m > n−

2 ≥ 0; hence max{α∗, −m−1} = α∗ = −1. But α must also satisfy α > −2m+n−1.
It is easy to check that (3.27) holds for some admissible α, if and only if m, n satisfy
the condition

3m − 2n > −2. (3.29)

Recalling the constraint m − n > − 3
2 in Theorem 3, it is easy to check that (3.29)

constitutes an additional constraint if n < 5
2 .

Using the estimates (3.28), (3.24), (3.25), it is easy to check that the integrals
on the right-hand side of (3.21) are uniformly bounded with respect to ǫ if (3.27)
is satisfied. For arbitrary η > 0, uǫ → u strongly in the space C4,1({u > η}).
Therefore passage to the limit ǫ → 0 in all of the integrals in (3.21) over the
domain {u > η} is straightforward. As to integrals over the domain {u < η}, we
have, for example, by virtue of (3.27),
∣

∣

∣

∣

∫

QT ∩{u<η}

fǫ(uǫ)uǫxxxuǫxuǫ
m−nζ6 dx dt

∣

∣

∣

∣

≤

(
∫

QT ∩{u<η}

fǫ(uǫ)|uǫxxx|
2

)1/2(∫

QT ∩{u<η}

uα+n−3
ǫ uǫ

4
x

)1/4

×

(
∫

QT ∩{u<η}

u4m−2n−(α+n)+3

)1/4

≤ cη
4m−2n−(α+n)+3

4 → 0 as η → 0.

Analogously, it is easy to check that all of the other integrals over {u < η} on the
right-hand side of (3.21) are bounded from above by some continuous function,
h(η), such that h(η) → 0 as η → 0. Therefore, first passing to the limit ǫ → 0, and
afterwards letting η → 0, we easily obtain

2−1

∫

Ω

ζ6|ux(x, T )|2 dx +

∫

QT ∩{u>0}

ζ6unu2
xxx ≤

2−1

∫

Ω

ζ6|u0x(x)|2 dx −

∫

QT ∩{u>0}

unuxxx[2uxx(ζ6)x + ux(ζ6)xx]−

∫

QT ∩{u>0}

(νumux − AuMux)(uxζ6)xx. (3.30)

Since u(·, t) ∈ C1(Ω̄) for almost t ∈ [0, T ], it is possible to estimate from below
the second term on the left hand side of (3.30) by using Lemma B.1 from [11]
(generalized Bernis inequalities). As a result we obtain,

2−1

∫

Ω

ζ6|ux(x, T )|2 dx + d7

∫

QT

ζ6
(

(u
n+2

6 )6x + |(u
n+2

3 )xx|
3 + (u

n+2
2 )2xxx

)

+

d7

∫

QT ∩{u>0}

ζ6unu2
xxx ≤ 2−1

∫

Ω

ζ6|u0x(x)|2 dx + d8

∫

QT

|ζx|
6un+2−
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∫

QT ∩{u>0}

unuxxx[2uxx(ζ6)x + ux(ζ6)xx]−

∫

QT ∩{u>0}

(νumux − AuMux)(uxζ6)xx, (3.31)

Next we estimate the terms in third integral on the right-hand side following idea
proposed in [13]:
∫

QT ∩{u>0}

unuxxxux(ζ6)xx

= 6

∫

QT ∩{u>0}

(u
n
2 uxxxζ3)(u

n−4
6 uxζ)(u

n+2
3 (5ζ2

x + ζζxx))

≤ 6

(
∫

QT ∩{u>0}

unu2
xxxζ6

)1/2(∫

QT ∩{u>0}

un−4u6
xζ6

)1/6

×

(
∫

QT

un+2(5ζ2
x + ζζxx)3

)1/3

≤ δ

∫

QT ∩{u>0}

(unu2
xxx + (u

n+2
6 )2x)ζ6

+ c(δ)

∫

QT

un+2(ζ6
x + (ζζxx)3) ∀ δ > 0;

∫

QT ∩{u>0}

unuxxxuxx(ζ6)x = 6

∫

QT ∩{u>0}

(u
n
2 uxxxζ3)

×
[(

u
n−1

3 uxx +
n − 1

3
u

n−4
3 u2

x −
n − 1

3
u

n−4
3 u2

x

)

ζ2
]

(u
n
2 −n−1

3 ζx)

≤ 6

(
∫

QT ∩{u>0}

unu2
xxxζ6

)1/2[ ∫

QT ∩{u>0}

( 3

n + 2
|(u

n+2
3 )xx|

+
n − 1

3

( 6

n + 2

)2

(u
n+2
6 )2x

)3

ζ6

]1/3(∫

QT

un+2ζ6
x

)1/3

≤ δ

∫

QT ∩{u>0}

(unu2
xxx + |(u

n+2
3 )xx|

3 + (u
n+2
6 )6x)ζ6

+ c(δ)

∫

QT

un+2ζ6
x ∀ δ > 0.

Using these estimates in inequality (3.31) with δ = d7/6 we obtain validity of the
following statement.

Theorem 4. Let ν = ±1, 0 ≤ A, 2 ≤ n < 3, m − 2
3n > − 2

3 if 2 ≤ n < 5
2 , and

m − n > − 3
2 if 5

2 ≤ n < 3, with the additional constraints that m < M if A > 0,
and m < n + 2 if A = 0 and ν = 1. Then the strong solutions obtain in Theorems
2, 3 satisfy the following local energy estimate
∫

Ω

ζ6|ux(x, T )|2 dx + d10

∫

QT

ζ6
(

(u
n+2
6 )6x + (u

n+2
3 )3xx + (u

n+2
2 )2xxx

)

+

d10

∫

QT ∩{u>0}

ζ6unu2
xxx ≤

∫

Ω

ζ6|u0x(x)|2 dx + d9

∫

QT

un+2(|ζx|
6 + |ζζxx|

3)−
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∫

QT ∩{u>0}

(νumux − AuMux)(uxζ6)xx, (3.32)

where ζ(x) is arbitrary nonnegative function from C4([−a, a]).

4. Finite speed propagation (strong slippage: 0 < n < 2)

In this section, we consider problem (P) with initial data, u0, which satisfies
(2.1) and which also possesses the additional property,

suppu0 ⊂ {x ≤ 0}. (4.1)

Let us introduce the following family of subdomains:

Ω(s) = Ω ∩ {x |x > s} ∀ s ∈ (−a, a), Qt(s) = Ω(s) × (0, t). (4.2)

Theorem 5. Let u0 satisfy (2.1), (4.1), let ν = ±1, 0 ≤ A, 0 < n < 2, m < M if
0 < A, m < n + 2 if ν = 1, A = 0, and

m > 0 if ν = −1, m >
n

2
if ν = 1,

and let u denote an arbitrary strong nonnegative solution of problem (P), obtained
as in Theorem 1, which satisfies the local entropy estimate in Theorem 2 or 3. Then
u possesses the finite speed of propagation property in the sense that there exists a
continuous function, s(t), such that s(0) = 0, and a positive time T0, such that

suppu(·, t) ⊂ Ω \ Ω(s(t)), s(t) < a ∀ t < T0, s(T0) = a. (4.3)

Remark 4.1. The analysis in the section applies also to (1.6 i ).

Proof. Since by assumption 0 < n < 2, the local entropy estimate, (3.17) or (3.19),
holds for some positive α < 2 − n. The proof of the finite speed of propagation
property is based on careful analysis of the properties of solutions satisfying these
inequalities with positive α. In the stable case, ν = −1, such analysis was performed
in [8] with A = 0. If ν = −1 and A > 0, a similar proof can be given. Therefore
we restrict our attention here to the unstable case, ν = 1. Although we set A = 0
for simplicity, all our estimates are also valid for the case ν = 1, A > 0. Thus, the
estimate (3.19) can be written in the form

1

α(α + 1)

∫

Ω

ζ4u1+α(x, T ) dx + c1

∫

QT

ζ4
(

uα+n−2γ+1(uγ)2xx + uα+n−3u4
x

)

≤
1

α(α + 1)

∫

Ω

ζ4u1+α
0 (x) dx + cR, α > 0, (4.4)

where the constant c = max(c2, c3, c4) and

R := R1 + R2 + R3 =

∫

QT

(|ζ4
x| + |ζζxx|

2)un+α+1+

∫

QT

|(ζ3ζx)x|u
α+m+1 +

∫

QT

ζ4uα+2m−n+1.

Let us define a cut-off function ζs,δ(x), as follows

ζs,δ(x) = ϕ
(x − s

δ

)

, (4.5)
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where s ∈ R, δ > 0 are free parameters, and ϕ(r) is a nonnegative nondecreasing
C2(R) function such that:

ϕ(r) = 0 for r ≤ 0, ϕ(r) = 1 for r > 1. (4.6)

We now introduce three energy functions for the solution u under consideration,
connected with the terms on the right hand side of our entropy estimate (4.4),

JT (s) :=

∫

QT (s)

uβ1+α+1(x, t) dx dt,

ET (s) :=

∫

QT (s)

uβ2+α+1(x, t) dx dt,

IT (s) :=

∫

QT (s)

uβ3+α+1(x, t) dx dt,

(4.7)

where β1 = n, β2 = m, β3 = 2m − n. Using (4.4), we deduce three functional
inequalities with respect to JT (s), ET (s), IT (s). Setting ζ(x) = ζs,δ(x) in (4.4), we
obtain after some simple computations

sup
t∈(0,T )

∫

Ω(s+δ)

uα+1 + D1

∫

QT (s+δ)

[

(

u
α+n+1

2

)2

xx
+
(

u
α+n+1

4

)4

x

]

≤ D2

[

1

δ4

∫

QT (s)\QT (s+δ)

uα+n+1 +
1

δ2

∫

QT (s)\QT (s+δ)

uα+m+1+

∫

QT (s)

uα+2m−n+1

]

+

∫

Ω(s)

u0(x)1+αdx. (4.8)

Here and throughout the proof, Di denote positive constants which can depend on
the problem parameters, α, n, m, but not on s, δ, and T . For arbitrary β > 0, l >
4, s > 0, δ > 0, such that s + 2δ < a, we obtain for σ = β + α + 1 that

∫

Ω(s+2δ)

uσdx ≤

∫

Ω(s+δ)

(u ζl
s+δ,δ)

σdx =

∫

Ω(s+δ)

v
4σ

n+α+1 dx, (4.9)

where v = v(x, t) = (u ζl
s+δ,δ)

n+α+1
4 . By the Gagliardo–Nirenberg interpolation

inequality,

∫

Ω(s+δ)

v
4σ

n+α+1 dx ≤ D3

[

∫

Ω(s+δ)

|vx|
4dx

]
θσ

n+α+1
[

∫

Ω(s+δ)

v
4(α+1)
n+α+1 dx

]

(1−θ)σ
α+1

(4.10)

where θ = β(n+α+1)
σ(n+4(α+1)) . Combining (4.9) and (4.10),

∫

Ω(s+2δ)

uβ+α+1dx ≤ D4

[

∫

Ω(s+δ)

uα+1dx

]

(1−θ)σ
α+1

×

[

∫

Ω(s+δ)

∣

∣

(

u
n+α+1

4

)

x

∣

∣

4
dx +

1

δ4

∫

Ω(s+δ)\Ω(s+2δ)

un+α+1dx

]
θσ

n+α+1

. (4.11)

Let us suppose that
θσ

n + α + 1
< 1.
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or, equivalently,

β < n + 4(α + 1), (4.12)

Then, integrating (4.11) with respect to t and using Hölder’s inequality,

∫

QT (s+2δ)

uβ+α+1 ≤ D5T
1− β

n+4(α+1) sup
t∈(0,T )

(

∫

Ω(s+δ)

uα+1(t)

)

(1−θ)(β+α+1)
α+1

×

[

1

δ4

∫

QT (s+δ)\QT (s+2δ)

un+α+1 +

∫

QT (s+δ)

∣

∣

(

u
n+α+1

4

)

x

∣

∣

4

]

β
n+4(α+1)

≤ D6T
1− β

n+4(α+1)

[

sup
t∈(0,T )

∫

Ω(s+δ)

uα+1(t) +
1

δ4

∫

QT (s+δ)\QT (s+2δ)

un+α+1

+

∫

QT (s+δ)

∣

∣

(

u
n+α+1

4

)

x

∣

∣

4

]1+µ

, (4.13)

where µ = 4β
n+4(α+1) > 0.

Using the definitions in (4.7) and the a priori estimate (4.8), we deduce from
(4.13) that

∫

QT (s+2δ)

uβ+α+1 ≤ D7T
1−µ

4

[JT (s) − JT (s + 2δ)

δ4
+

ET (s) − ET (s + δ)

δ2
+ IT (s) +

∫

Ω(s)

uα+1
0 dx

]1+µ

. (4.14)

The inequality (4.14) holds for the three values of βi, i = 1, 2, 3, prescribed in (4.7),
if condition (4.12) holds with β = βi, i = 1, 2, 3. These conditions may be written
as

1) α + 1 > 0, 2) m < n + 4(α + 1), 3) 2m − n < n + 4(α + 1).

It is easy to check that all of these conditions are satisfied for some α ∈ (α2, 2− n)
if and only if

m < 6 − n. (4.15)

Thus, if inequality (4.15) holds, we obtain the following system of functional
inequalities:

JT (s + δ) ≤ D8T
4−µ1

4

[JT (s) − JT (s + δ)

δ4
+

ET (s) − ET (s + δ)

δ2
+

IT (s) + h0(s)
]1+µ1

,

ET (s + δ) ≤ D9T
4−µ2

4

[JT (s) − JT (s + δ)

δ4
+

ET (s) − ET (s + δ)

δ2
+

IT (s) + h0(s)
]1+µ2

,

IT (s + δ) ≤ D10T
4−µ3

4

[JT (s) − JT (s + δ)

δ4
+

ET (s) − ET (s + δ)

δ2
+

IT (s) + h0(s)
]1+µ3

,

(4.16)
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where h0(s) =
∫

Ω(s)
u0(x)1+α dx, and

µ1 =
4n

n + 4(α + 1)
, µ2 =

4m

n + 4(α + 1)
, µ3 =

4(2m− n)

n + 4(α + 1)
.

Due to the boundedness and nonnegativity of u, the following estimates are obvious

JT (0) ≤ JT :=

∫

QT

uβ1+α+1 dx dt < cT, ∀T > 0,

ET (0) ≤ ET :=

∫

QT

uβ2+α+1 dx dt < cT, ∀T > 0,

IT (0) ≤ IT :=

∫

QT

uβ3+α+1 dx dt < cT, ∀T > 0,

(4.17)

where c is a constant which does not depend on T . The validity of the statement
of Theorem 5 when inequality (4.15) holds, now follows from (4.16), (4.17), and
Lemma A.2 in [11], since h0(s) = 0 for any s > 0.

If m ≥ 6− n, we proceed as follows. Fix m such that n
2 < m < 6− n. It is easy

to see that due to the boundedness of the solution u, all of the previous estimates
in the proof of Theorem 5 are remain true when m is replaced by m. As result the
system (4.16) is obtained with respect to new energy functions (4.7) defined by the
values

β1 = n, β2 = m, β3 = 2 m − m,

and where

µ1 =
4n

n + 4(α + 1)
, µ2 =

4 m

n + 4(α + 1)
, µ3 =

4(2 m − n)

n + 4(α + 1)
.

In this manner, the validity of the statement of the theorem for the case m ≥ 6−n
again follows from (4.16) and Lemma A.2 in [11]. �

5. Finite speed propagation (weak slippage: 2 ≤ n < 3)

In this section we shall again consider problem (P) with initial data, u0, which
satisfies (2.1) as well as the additional property, (4.1). The subdomains, Ω(s) and
Qt(s), will be understood here to be as defined in (4.2).

We first prove the following lemma, which provides control on the L1
loc(Ω) norm

of some minimal positive power of the solution under consideration, u(x, t). For
the sake of simplicity, the results in this section are proven for ν = 1 and A = 0,
though they remain valid for ν = −1 and A > 0 as well. The results here can also
be readily shown to apply to (1.4) if 2 < n < 3 and to (1.6 i).

Lemma 5.1. Let ν = ±1, 0 ≤ A, 1/2 < n < 3, m > n/2, η > 1−n
3 , ε > 0, with

m < M if A > 0 and m < n + 2 if ν = 1, A = 0. Then there exists a positive
constant c, depending on n, m, η, ε only, such that any nonnegative strong solution
u of problem (P) satisfies

∫

Ω

u(x, T )η+1ζ4 ≤ ε

(

∫

QT ∩{u>0}

ζ6unu2
xxx +

∫

QT

|ζx|
6un+2

)

+

c

(

∫

QT

[

un+2η|ζx|
2 + u

3m+3η+1−n
2 ζ3 + um+η+1|ζζx|

2
]

)

+
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∫

Ω

uη+1
0 ζ4 + c

∫

QT ∩supp ζ

un+3η−1, (5.1)

for arbitrary nonnegative ζ ∈ C2([−a, a]).

Proof. The proof here follows that of Lemma 5.2 in [11]. Let us test the integral
identity in (2.2) by the following test function

ϕ = −lδζ
4(u + γ)η, γ > 0,

where {lδ(t)} ⊂ C∞
c (0, T ) and lδ → χ(0,T ) as δ → 0. After some simple computa-

tions, we obtain

−

∫

QT

(lδ)tζ
4 (u + γ)η+1

η + 1
=

∫

QT

umuxlδ((u + γ)ηζ4)x+

∫

QT ∩{u>0}

lδ(ζ
4)xun(u + γ)ηuxxx+

η

∫

QT ∩{u>0}

lδζ
4un(u + γ)η−1uxuxxx := A1 + A2 + A3. (5.2)

The terms A2, A3 are estimated as in [11, Lemma 5.2]. For any ǫ > 0,

|A2| ≤ ǫ

∫

QT ∩{u>0}

ζ6unu2
xxx + C1(ǫ)

∫

QT

|ζx|
2un(u + γ)2η,

|A3| ≤ ǫ

(
∫

QT ∩{u>0}

ζ6unu2
xxx +

∫

QT

|ζx|
6un+2

)

+

C2(ǫ)

∫

QT ∩supp ζ

(u + γ)n+3η−1.

Here Ci denote constants which may depend on m, n, η, and on ǫ if indicated, but
which are independent of γ and δ.

Let us now estimate A1.

A1 =

∫

QT

ηum(u + γ)η−1u2
xζ4lδ+

∫

QT

4um(u + γ)ηuxζ3ζxlδ := A
(1)
1 + A

(2)
1 . (5.3)

Since m − n−4
3 + η − 1 > 0, it follows from Young’s inequality and Lemma B.1 in

[11] that for any ǫ > 0,

|A
(1)
1 | ≤ ǫ

∫

QT ∩{u>0}

u6
xun−4ζ6 + C3(ǫ)

∫

QT

(u + γ)
3
2 (m−n−4

3 +η−1)ζ3 ≤

ǫ

(

∫

QT ∩{u>0}

ζ6unu2
xxx + C4

∫

QT

ζ6
xun+2

)

+ C3(ǫ)

∫

QT

(u + γ)
3m+3η+1−n

2 ζ3. (5.4)

With regard to A
(2)
1 , we have by Young’s inequality

|A
(2)
1 | ≤ |A

(1)
1 | + C5

∫

QT

(u + γ)m+η+1|ζζx|
2. (5.5)

Thus all the integrals in (5.2) are uniformly bounded with respect to parameters
δ > 0, γ > 0. Therefore, collecting the estimates obtained for the terms Ai, i =
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1, . . . , 3, passing to the limit δ → 0, and then to the limit γ → 0, the estimate (5.1)
follows. �

Theorem 6. Let u0 satisfy (2.1), (4.1), let ν = ±1, 0 ≤ A, 1/2 < n < 3, m < n/2,
m < M if A > 0, and m < n+2 if ν = 1, A = 0, and let u denote an arbitrary strong
nonnegative solution of problem (P), obtained as in Theorem 1, which satisfies the
local entropy estimate in Theorem 2 or 3. Then u possesses the finite speed of
propagation property in the sense of Theorem 5.

Proof. Let us consider the local energy estimate (3.32) obtained in Theorem 4, and
estimate the third term on the right hand side, setting ν = 1 for simplicity,

B :=

∫

QT ∩{u>0}

umux(uxζ6)xx =

∫

QT ∩{u>0}

umuxuxxxζ6+

12

∫

QT ∩{u>0}

umuxuxxζ5ζx + 6

∫

QT ∩{u>0}

umu2
x(ζ5ζx)x := B1 + B2 + B3.

Using Young’s inequality, we obtain that for any ǫ > 0,

|B1| ≤

∣

∣

∣

∣

∫

QT ∩{u>0}

u
n
2 uxxxuxu

(n−4)
6 um−n

2 −n−4
6 ζ6

∣

∣

∣

∣

≤

ǫ

∫

QT ∩{u>0}

(unu2
xxx + u6

xun−4)ζ6 + D1(ǫ)

∫

QT

u3m−2n+2ζ6.

Here and in the sequel Di denote constants which may depend on m, n, η, and on
ǫ if indicated, but which are independent of δ and s. Similarly, we may estimate

B2 ≤ ǫ

∫

QT ∩{u>0}

(u3
xxun−1 + u6

xun−4)ζ6 + D2(ǫ)

∫

QT

u2m−n+2|ζ2ζx|
2,

B3 ≤ ǫ

∫

QT ∩{u>0}

u6
xun−4ζ6 + D3(ǫ)

∫

QT

u
3m−n+4

2 |(ζ3ζx)x|
3
2 .

Using these estimates in (3.32), we obtain that for ǫ > 0 sufficiently small
∫

Ω

|ux(x, T )|2ζ6 + 2−1d10

∫

QT

ζ6[(u
n+2
6 )6x + (u

n+2
3 )3xx + (u

n+2
2 )2xxx]+

2−1d10

∫

QT ∩{u>0}

ζ6unu2
xxx ≤

∫

Ω

|u0x|
2ζ6 + d9

∫

QT

(|ζx|
6 + |ζζxx|

3)|u|n+2+

D4

∫

QT

u3m−2n+2ζ6 + D4

∫

QT

u2m−n+2|ζ2ζx|
2 + D4

∫

QT

u
3m−n+4

2 |(ζ3ζx)x|
3
2 . (5.6)

Assuming that η > 1−n
3 , summing the inequalities (5.6), (5.1), and taking ǫ > 0 to

be sufficiently small, we obtain:
∫

Ω

|u(x, T )|η+1ζ4 +

∫

Ω

|ux(x, T )|2ζ6 + 4−1d10

∫

QT ∩{u>0}

ζ6|(u
n+2
2 )xxx|

2

≤

∫

Ω

|u0x|
2ζ6 +

∫

Ω

|u0|
η+1ζ4 + D5R,

R :=

∫

QT

u3m−2n+2ζ6 +

∫

QT

u
3m+3η+1−n

2 ζ3+

∫

QT ∩supp ζ

un+3η−1 +

∫

QT

(|ζx|
6 + |ζζxx|

3)un+2 +

∫

QT

u2m−n+2|ζ2ζx|
2+
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∫

QT

un+2η|ζx|
2 +

∫

QT

um+η+1|ζζx|
2 +

∫

QT

u
3m−n+4

2 |(ζ3ζx)x|
3
2 . (5.7)

Let us take ζ(x) as the function ζs,δ from (4.5). It then follows from (5.7) that

sup
t∈(0,T )

∫

Ω(s+δ)

|u(x, t)|η+1dx + sup
t∈(0,T )

∫

Ω(s+δ)

|ux(x, t)|2dx

+ 4−1d10

∫

QT (s+δ)

|(u
n+2

2 )xxx|
2 ≤

∫

Ω(s)

(|u0x|
2 + |u0|

η+1) dx + D6R̃,

R̃ :=

∫

QT (s)

u3m−3n+2 +

∫

QT (s)

u
3m+3η+1−n

2 +

∫

QT (s)

un+3η−1+

δ−6

∫

QT (s)

un+2 + δ−2

∫

QT (s)

u2m−n+2 + δ−2

∫

QT (s)

un+2η+

δ−2

∫

QT (s)

um+η+1 + δ−3

∫

QT (s)

u
3m−n+4

2 :=

8
∑

i=1

δ−χi

∫

QT (s)

uξi . (5.8)

We now wish to guarantee the validity of the inequalities

ξi > 1 + η, i = 1, 2, . . . , 8. (5.9)

First we ensure that

ξ3 = n + 3η − 1 > 1 + η ⇔ η > 1 −
n

2
:= ηmin. (5.10)

Next we deduce a restriction for m by considering

ξ1 = 3m − 2n + 2 > 1 + η ⇔
3

2
(2m − n) + 1 +

(

1 −
n

2

)

> 1 + η. (5.11)

Together, (5.10) and (5.11) yield that

ηmin = 1 −
n

2
< η < ηmin +

3

2
(2m − n). (5.12)

There exists η satisfying (5.12) iff

2m− n > 0. (5.13)

Next it is easy to see that

ξ2 =
3m + 3η + 1 − n

2
=

(n + 3η − 1) + (3m − 2n + 2)

2
.

Therefore the inequality
ξ2 > 1 + η (5.14)

follows from (5.10) and (5.11). It is easy to check that the other inequalities in
(5.9) can be satisfied by an appropriate choice of η if conditions (5.10) and (5.11)
are satisfied.

As result of (5.9), the following Gagliardo–Nirenberg interpolation inequalities
holds for i = 1, 2, . . . , 8,

∫

Ω(s+2δ)

uξidx ≤ D7

(

∫

Ω(s+δ)

∣

∣

(

(ζ
6

n+2

s+δ,δu)
n+2

2

)

xxx

∣

∣

2
dx

)

θiξi
n+2

×

(

∫

Ω(s+δ)

(ζ
6

n+2

s+δ,δu)η+1dx

)

(1−θi)ξi
η+1

, (5.15)
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where θi = (n+2)(ξi−η−1)
ξi(5η+n+7) , i = 1, 2, . . . , 8. We now wish to guarantee that

θiξi

n + 2
< 1, i = 1, 2, . . . , 8. (5.16)

From the definition of θi, it follows that (5.16) holds iff

η >
ξi − n − 8

6
, i = 1, 2, . . . , 8. (5.17)

It is easy to check that all the inequalities in (5.9) and (5.17) hold for some η in
the interval (5.12) if condition (5.13) is satisfied.

Therefore, as in [11], we may deduce from (5.8), (5.15), the following inequalities

∫

QT (s+δ)

uξi ≤ D8T
1−

θiξi
n+2

( 8
∑

j=1

δ−χj

∫

QT (s)

uξj + H0(s)

)1+
6(ξi−η−1)

5η+n+7

,

(5.18)

where H0(s) :=
∫

Ω(s)
(u1+η

0 (x) + |u0x(x)|2) dx = 0, for all 0 < s < s + δ < a. From

(5.18) and Lemma A.2 from [11], the conclusion of Theorem 6 now follows. �

Acknowledgment. One of the authors (A. N.-C.) would like to acknowledge the
support of the M.R. Saulson Research Grant.

References

[1] E. Beretta, M. Bertsch & R. Dal Passo, Nonnegative solutions of a fourth-order nonlinear
degenerate parabolic equation, Arch. Rat. Mech. Anal. 129 (1995) 175-200.

[2] F. Bernis & A. Friedman, Higher order nonlinear degenerate parabolic equations, J. Diff.
Eqns. 83 (1990) 179-206.

[3] F. Bernis,Finite speed of propagation and continuity of the interface for thin viscous flows,
Adv. Differential. Equations. 1 (1996) 337-368.

[4] F. Bernis,Finite speed of propagation for thin viscous flows when 2 6 n < 3, C. R. Acad.
Sci. Paris Sér. I Math. 322 (1996) 1169-1174.

[5] E. Beretta, Selfsimilar source solutions of a fourth order degenerate parabolic equation,
Nonlinear Anal. TMA 29 (1997) 741-760.

[6] A.L. Bertozzi & M. Pugh, Lubrication approximation for thin viscous films: regularity and
long time behavior of weak solutions, Comm. Pure Appl. Math. 49 (1996) 85-123.

[7] A.L. Bertozzi & M. Pugh, Long-wave instabilities and saturation in thin film equations,
Comm. Pure Appl. Math. 51 (1998) 625-661.

[8] R. Dal Passo, L. Giacomelli & A. Shishkov, The thin film equation with nonlinear diffusion,
Commun. Part. Diff. Eqns. 26 (2001) 1509-1557.

[9] S.D. Eidel’man, ”Parabolic Systems,” North-Holland, Amsterdam, 1969.
[10] L. Giacomelli, A fourth-order degenerate parabolic equation describing thin viscous flows

over an inclined plane, Appl. Math. Lett. 12 (1999) 107-111.
[11] L. Giacomelli, A. Shishkov, Propagation of support in one-dimensional convected thin-film

flow, Ind. Univ. Math. J. 54 (2005) 1181–1215.
[12] G. Grün, On the convergence of entropy consistent schemes for lubrication type equations

in multiple space dimensions, Math. Comput. 72 (2003) 1251-1279.
[13] J. Hulshof & A. Shishkov, The finite speed of propagation property for the thin film equation

in terms of L1-norm, Adv. Diff. Eqns. 3 (1998) 625–642.
[14] I. Klapper & J. Dockery, Role of cohension in the material description of biofilms, Phys.

Rev. E. 74 (2006) 031902-1–031902-8.

[15] R.S. Laugesen & M. Pugh, Properties of steady states for thin film equations, EJAM 11

(2000) 293-351.
[16] E. Minkov & A. Novick-Cohen, Droplet profiles under the influence of van der Waals forces

EJAM 12 (2001) 367-393.

25



[17] E. Minkov & A. Novick-Cohen, Errata: ”Droplet profiles under the influence of van der
Waals forces, (EJAM 12 (2001) 367-393),” EJAM 17 (2006) 128.

[18] A. Oron, S.H. Davis & S.G.Bankoff, Long-scale evolution of thin liquid films, Rev. Mod.
Phys. 69 (1997) 931-980.

[19] A. Oron & P. Rosenau, Formation of patterns induced by thermocapillary and gravity, J.
Phys. (France) II 2 (1992) 131-146.

[20] A. Sharma & E. Ruckenstein, An analytical nonlinear theory of thin film rupture and its
application to wetting films, J. Colloid. Interface Sci. 113 (1986) 456-479.
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