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Abstract

Using numerical computations and asymptotic analysis, we study the effects of grain grooves on grain boundary migration in nano-
films, focusing for simplicity on axisymmetric bicrystals containing an embedded cylindrical grain located at the origin. We find there is a
critical initial grain radius, R�, such that if R < R�; the grain at the origin shrinks and annihilates, and if R > R�, groove growth during
grain shrinkage leads to film break-up. The central cross-section of the grain boundary profile is seen to be parabolic, and an ordinary
differential equation which depends on the tilt angle and the groove depth is seen to govern the location of the groove root. Near the
annihilation–pinch-off transition, temporary stagnation occurs; thereafter, the shrinking grain accelerates rapidly, then disappears.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

We consider a film which contains an axisymmetric grain
located at the origin. The system evolves due to three-
dimensional (3-D) motion by the mean curvature of the
grain boundary coupled along a circular triple junction line
to an external surface evolving via surface diffusion. Our
system, which has no steady states, allows us to capture cer-
tain effects, such as stagnation, pinch-off and acceleration,
which were not to be seen in earlier 2-D studies [1–3].

Stagnation of grain growth in polycrystalline films occurs
during annealing when the average grain radius is greater
than the film’s thickness. See Ref. [4] for experimental obser-
vations of grain growth and stagnation in Al foils, as well as a
discussion of other possible causes of stagnation. Proposed
explanations for stagnation include solute drag, pinning of
grain boundary by defects, and stagnation due to grain
grooving resulting from surface diffusion. The present study
explores this last conjecture within the framework of a simple
but realistic 3-D model system. Mullins [5] suggested that in
films with columnar structure, the groove root can act as an

anchor, grains boundaries can take on a catenoidal-shaped
surface with zero mean curvature, and grain boundary
migration can come to a halt. Note that in Mullins’ original
1958 paper [5], the notion of critical angle corresponded to
the angle made by the grain boundary in steady 2-D traveling
wave solutions. Although the configuration suggested by
Mullins cannot be a steady state for the geometry which we
consider, since our system has no steady states (see Appendix
A), nevertheless it can be expected to evolve slowly. An
approximate version of Mullins’ idea was employed in Ref.
[6] to model stagnation of grain growth in thin films. An algo-
rithm was implemented in Ref. [6] which introduces the
notion of a critical value for the in-plane curvature, such that
if the inclination of the grain boundary to the external sur-
face is equal to, or less than, the critical angle, then locally
the grain boundary has the shape of a catenoid and should
thus be stationary. Note that neither in Ref. [5] nor in Ref.
[6] was any true 3-D problem considered. Nevertheless, the
experimental data obtained in Ref. [7] fit the results of Ref.
[6] fairly well. Catenoids and critical values of R0=L, where
L denotes half the initial thickness of the film, appear natu-
rally in various related problems involving motion by mean
curvature and surface diffusion, such as hole formation in
thin films [8,9].
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It is well known that in polycrystalline nanofilms, grain
grooves can often traverse the entire thickness of the film
within a reasonable amount of time [10]. This can then lead
to void formation, which can in turn lead to the agglomera-
tion of the film. We point out that our present study is valid
until the embedded grain annihilates or the grain groove pen-
etrates the the thin film. If the groove root does penetrate the
thin film, then the next stage of the dynamics would require
an understanding of void or hole growth and stability. Mod-
ern experimental techniques now allow such phenomena to
be observed; see e.g. Ref. [11] for experimental data on the
kinetics of void formation and agglomeration in thin copper
films, and related references. A theory for groove growth in
flat stationary grain boundaries was proposed by Mullins
[12]. A theoretical analysis of void formation in 2-D thin
films during grain growth was presented in Ref. [13] for a
one component system and in Ref. [14] for the growth of a
stationary groove in a two component alloy system.

In the present paper we explore the transition between
annihilation and break-up, focusing on accompanying fea-
tures such as stagnation, grain boundary shape, and the
acceleration which typically occurs just prior to grain anni-
hilation. We summarize below our main results.

Our numerical results indicate that the dynamics of grain
boundaries coupled with an external surface differ signifi-
cantly from the dynamics of freely shrinking grains, and do
not obey the postulated algorithm underlying the simula-
tions in Ref. [6]. Since our system has no steady states, the
embedded grain eventually either annihilates or leads to
voiding along the grain boundary. Whether annihilation or
voiding does in fact occur depends in our model on the film’s
thickness, the initial radius of the grain, the ratio of the grain
boundary and the external surface energies, and on the
kinetic coefficients: the grain boundary mobility and the sur-
face diffusion coefficient. If the initial radius of the grain, R0,
is varied, while the other parameters are held fixed, we find
there is a critical radius R� such if R0 < R�, the grain at the ori-
gin shrinks and annihilates, and if R0 > R�, groove growth
during grain shrinkage leads to film break-up; i.e. the groove
depth reaches half the film thickness and the grain detaches
from the film before the grain has time to annihilate. We find
that while R� depends linearly on L when L� 1, at small dis-
tinctly nanoscale values of L, the dependence is nonlinear.
Although true stagnation is not possible for our 3-D prob-
lem, we observe significant delay of grain growth prior to
pinch-off or grain annihilation when R0=R� J 1. Hence it
seems reasonable to consider R� as a generalization of the
notion of a critical in-plane curvature as discussed in Ref.
[6]. It is not too surprising that the results of our investiga-
tions do not correspond too closely with the results reported
in Ref. [6], because here, as in Ref. [15], the dynamics cou-
pling the time evolution of the grain boundary and the exter-
nal surfaces are truly 3-D. Our numerical simulations exhibit
acceleration of the rate of shrinkage of the grain just prior to
annihilation. Jerky motion [5] was not observed.

The paper also contains an asymptotic analysis of the
mathematical model, based on the assumption that m and

L=R0 are small, where m denotes the ratio of grain bound-
ary to external surface energies. To leading order, the cou-
pled motion of the exterior surface and grain boundary can
be stated in terms of a partial differential equation (PDE)
for the exterior surface which couples via the boundary
data with an ordinary differential equation (ODE) for
RðtÞ, the distance of the groove root to the origin,

Rt ¼ A
r�u
u�
� 1

R

� �
; ð1:1Þ

where r�u; u
� denote the tilt angle and the thickness of the

film at the groove root, respectively. The prediction (1.1)
was strongly confirmed by our numerical calculations.
The grain boundary is shown to have a parabolic profile
to leading order, which was also robustly confirmed by
our numerical calculations. If the additional assumption
is made that R0 is quite large and mR0=L ¼ Oð1Þ, then a ra-
dial variant of Mullins’ equation for thermal grooving
[5,16] is obtained, and break-up can be expected. If R0 is
quite large, but nevertheless mR0=L ¼ OðmaÞ where
0 < a < 1, then to leading order the motion in the vicinity
of the groove root is governed by a quasi-steady traveling
wave solution whose velocity is controlled by (1.1) with
r�u=u� ¼ m=6L: It is interesting to note that the term
m=ð6LÞ corresponds to the small angle approximation
which was proposed by Mullins [5] and implemented by
Dunn [17] for the out-of-plane component of the mean
curvature.

2. The mathematical model

A description of the physical processes which influence
the coupled motion of groove roots and exterior surfaces
can be found in Mullins’ 1958 paper [5]. Although the dis-
cussion given there is limited to the linear regime and the
coupling of the grain boundary motion is not fully consid-
ered, the discussion given there can be generalized to
encompass nonlinear effects and the motion of the grain
boundary [1,2,15]. This model is formulated below in the
context of a thin film bicrystalline specimen with an axi-
symmetric geometry and with reflection symmetry about
its midplane. For simplicity, as in Mullins [5], the possible
effects of anisotropy have been neglected, as have possible
nonequilibrium or kinetic effects on the balance of mechan-
ical forces, elasticity effects and defect effects. These model
equations provide, in a sense, a simplest possible frame-
work in which to consider coupled grain boundary and
external surface motions, and thus are noteworthy for the
rich phenomena that they nevertheless exhibit.

The grain boundary is assumed to evolve by mean curva-
ture, V ¼ Aj, and the exterior surface is assumed to evolve
by surface diffusion, V ¼ �BMsj. Here V and j denote the
normal velocity and the mean curvature of the grain bound-
ary and of the exterior surface, respectively, A, B are kinetic
coefficients, andMs denotes the surface Laplacian. Along the
groove root, the boundary conditions are assumed to include
(i) a “persistence condition” stating that grain boundary and
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the exterior surface remain attached; (ii) a balance of
mechanical forces (Young’s law): 1

sinðhleftÞ
¼ 1

sinðhrightÞ
¼

m
sinðh grooveÞ, where hleft; hright are the angles between the exterior

surface and the grain boundary, hgroove is the dihedral angle at
the groove root, and m ¼ cgrain boundary=cexterior surface, the ratio

of the surface free energies of the exterior surface and the
grain boundary; (iii) continuity of the chemical potential,
jþ ¼ j�, where j� denotes the mean curvature evaluated
on either side of the groove root; and (iv) balance of mass
flux, ½~n � rsj�þ ¼ ½~n � rsj��, where ½~n � rsj�� denotes the gra-
dient of the mean curvature on either side of the groove root.
Far away from the grain located at the origin, the original
bicrystal configuration is assumed to be preserved. These
equations constitute a reasonable mathematical model until
the ”geometry” of the model breaks down, due to annihila-
tion of the grain at the origin or to break-up of the film.

Our governing equations contain three physical parame-
ters, A, B, m, whose dimensions are given by

½A� ¼ X 2=T ; ½B� ¼ X 4=T ; ½m� ¼ 1, as well as two geometric
parameters, R0; L, whose dimensions are given by
½R0� ¼ X ; ½L� ¼ X , where R0 denotes the initial radius of the
grain embedded at the origin and L denotes half of the unper-
turbed thickness of the thin nanofilm. We use A and B to

define typical length and time scales, T ¼ B=A2;

X ¼
ffiffiffiffiffiffiffiffiffi
B=A

p
, and formulate our mathematical model in terms

of the dimensionless parameters m, R0 ð¼ R0=X Þ; L ð¼ L=X Þ,
and the dimensionless (scaled) variables r ¼ rðu; tÞ; h ¼
ðr; tÞ; u� ¼ u�ðtÞ, and R ¼ RðtÞ, as defined in Fig. 1.

In terms of these parameters and variables, motion by
mean curvature and motion by surface diffusion may be
stated, respectively, as

rt ¼
ruu

1þ r2
u

� 1

r
; 0 < u < u�ðtÞ; ð2:2Þ

and

ht ¼ �
1

r
@

@r
rkrffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

r

q
2
64

3
75; 0 < r <1; r – RðtÞ; ð2:3Þ

where

k ¼ 1

r
@

@r
rhrffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

r

q
2
64

3
75: ð2:4Þ

Eqs. (2.2)–(2.4), as well as the boundary conditions (2.5)–
(2.13) prescribed below, should be valid for 0 < t < T ,
where T denotes the (scaled) time at which the model breaks
down due to annihilation of the grain at the origin or pinch-
off due to groove root penetration of the film.

Along the grain groove, (i) the persistence condition
may be stated as

u�ðtÞ ¼ Lþ hðRðtÞ�; tÞ; rðu�ðtÞ; tÞ ¼ RðtÞ; ð2:5Þ
hðRðtÞþ; tÞ ¼ hðRðtÞ�; tÞ; ð2:6Þ

(ii) Young’s law implies that

arctanðhrðRðtÞþ; tÞÞ � arctanðhrðRðtÞ�; tÞÞ
¼ 2 arcsinðm=2Þ; ð2:7Þ

arctanðhrðRðtÞþ; tÞÞ þ arctanðhrðRðtÞ�; tÞÞ
þ 2 arctanðruðu�ðtÞ; tÞÞ ¼ 0; ð2:8Þ

(iii) continuity of the chemical potential gives that

kðRðtÞþ; tÞ ¼ kðRðtÞ�; tÞ; ð2:9Þ
and (iv) balance of mass flux may be stated as

krffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

r

q jðRðtÞþ;tÞ ¼
krffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h2
r

q jðRðtÞ� ;tÞ: ð2:10Þ

At the origin, axisymmetry implies that

hrð0; tÞ ¼ 0; krð0; tÞ ¼ 0; ð2:11Þ
and at u ¼ 0, symmetry of the thin film with respect to its
midplane implies that

ruð0; tÞ ¼ 0: ð2:12Þ
And finally, the far-field conditions may be written as

hð1; tÞ ¼ kð1; tÞ ¼ 0: ð2:13Þ
Eqs. (2.2)–(2.13) are to be solved in conjunction with the
initial conditions

rðu; 0Þ ¼ R0; 0 < u < L; hðr; 0Þ ¼ 0; 0 < r <1:
ð2:14Þ

3. Numerics

3.1. Methodology

Suppose that the solution is known up to time t for
some t > 0, and suppose that past values of RðtÞ are used
to approximate Rðt þ MtÞ for some Mt > 0. Taking
Rðt þ MtÞ to be now known, the equations in problem

u

2RrR 1

r

)(
21

11

2

1

RR
k

h,u h(r,t)

r

r(u,0)=R0

r(u,t)
u=u*

u=0

r=R(t)

h(r,0)=0 u=L

Fig. 1. The upper panel shows the curvatures along the grain boundary
surface. The lower panel indicates the definition of the variables in the
central cross-section.
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(2.2)–(2.14) can be used to approximate hðr; t þ MtÞ and
then rðu; t þ MtÞ. This can be accomplished by first solving
a ”surface problem” for hðr; t þ MtÞ using an implicit
finite-difference scheme based on the equations for surface
diffusion, (2.3) and (2.4), and the boundary conditions
which depend on h and k only: (2.6) and (2.7), (2.9),
(2.10), (2.11) and (2.13). Having approximated
hðr; t þ MtÞ, an approximation for u�ðt þ MtÞ ¼ Lþ
hðRðt þ MtÞ; t þ MtÞ which appears in (2.5) is implied.
The value of u�ðt þ MtÞ, the boundary condition (2.12)
and the equation for grain boundary motion (2.2),
together constitute a “grain boundary problem” whose
solution via an implicit finite-difference scheme gives an
estimate of rðu; t þ MtÞ; 0 < u < u�ðt þ MtÞ. By now, all
of the equations and boundary conditions in problem
(2.2)–(2.14) have been used, except for the second condi-
tion implied by Young’s law, (2.8), which connects
hrðRðt þ MtÞ; t þ MtÞ and ruðu�; t þ MtÞ. This last condition
can be used to correct the approximation for Rðt þ MtÞ.
This process can be iterated until sufficient accuracy is
achieved. The initial conditions have been taken in accor-
dance with (2.7), (2.8) and (2.14), in that Young’s law has
been imposed at the groove root on the finest finite-differ-
ence scale for the sake of compatibility.

3.2. Physical conclusions indicated by our numerical results

Our numerical results clearly indicate the appearance of
a transition between annihilation and break-up (see Fig. 2).
Recall, however, that when m ¼ 0, which corresponds to
the case of a “freely moving grain boundary,” annihilation
is always indicated, because no groove root forms in this

case. Roughly speaking the transition can be described in
terms of the “aspect ratio” a ¼ R0=L. There appears to be
a critical aspect ratio, ac, such that for a < ac, the grain
at the origin is “sufficiently small” so that annihilation
ensues, and if a > ac, the thin film is “sufficiently thin” such
that break-up occurs. The critical aspect ratio, ac, can be
seen to decrease as m increases, which corresponds to an
increase in the relative energy of the grain boundary sur-
face, and hence in the tendency towards break-up. Note
that while for L� 1 ac is independent of L, when
L � 0:1� 0:5 or smaller, ac can be seen to depend nonlin-

early on L; recalling that X ¼
ffiffiffiffiffiffiffiffiffi
B=A

p
� 4	 10�9 m has

been used as the scaling length, we see that a cross-over
from linear to nonlinear behavior of the annihilation–
break-up transition occurs when the film thickness reaches
the nanoscale. The grain radius RðtÞ as a function of time is
portrayed in Fig. 3 for m ¼ 0:1 and L ¼ 1. Where R0 ¼ 1 in
Fig. 3, annihilation occurs and RðtÞ can be seen to closely

approximate the theoretical prediction, RðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0 � 2t
q

,

which holds for the m ¼ 0 case of a “free moving grain
boundary.” Where R0 ¼ 112:5 and 114.05 in Fig. 3, a tran-
sition between annihilation and break-up can be seen to
occur roughly at R0 ¼ 112:75. The behavior of the grain
radius as a function of time can be seen to be quite similar
for values of R0 just above and below the transitional value,
with a long period of relative stagnation appearing in both
cases. The overall rate of decrease in size of the grain radius
is much slower for both these cases than for the case m ¼ 0
of the freely moving grain boundary.

The depth of the groove root as a function of time on
two different time scales can be seen in Fig. 4. Some oscil-

Fig. 2. The graph in the lower left panel indicates the transition between annihilation and break-up. The solid lines corresponds to our computations, the
dotted lines correspond to Mullins’ criterion for stagnation: L=R0 ¼ m=6, see Refs. [5,17]. Upper left panel: thin film break-up. Here
m ¼ 0:1;L ¼ 0:25;R0 ¼ 30, and t ¼ 1761. Right panels: grain annihilation. The same plot is given on two scales. Here m ¼ 0:1; L ¼ 0:25;R0 ¼ 20, and
t ¼ 773:6.
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lations can be seen just prior to annihilation when R0 is suf-
ficiently small. We observed similar behavior during the
shrinking of a spherical segment shaped grain attached to
an external surface [15]. Note, however, that for R0 just
above and below its critical value, the time dependence in
both two cases appears quite similar throughout the evolu-
tion of the system.

The inclination of the grain boundary at the groove root
as a function of time is portrayed in Fig. 5. Just prior to
annihilation, the inclination of the grain boundary at the
groove root can be seen to change its direction. Until then,
and up to and during break-up, ruðu�Þ > 0, which implies
that the principal curvatures here are of the opposite sign,
and corresponds to the observed stagnation.

In terms of the shape of the grain boundary, as break-up
is approached, the grain boundary maintains a roughly
self-similar parabolic shape while loosing height, and the
direction of the grain boundary inclination does not
change. See Figs. 3–6. As annihilation is approached, we
see from Figs. 5 and 6 that here also the grain boundary
appears to maintain a roughly self-similar parabolic pro-
file, though just prior to annihilation, the grain boundary
inclination changes sign. This change in the sign of the
inclination of the grain boundary is indicative of a change
in sign of one of the principle curvatures, and confirms the
decrease in the height of the exterior surface of the shrink-
ing grain (see Fig. 6), and subsequent acceleration seen in
Fig. 5. The parabolicity of the grain boundary profile is dis-
cussed further in Section 4.

In Figs. 7 and 8, we verify our asymptotic predictions
for the motion of the grain boundary which are derived

Fig. 3. The grain radius RðtÞ as a function of time. Here m ¼ 0:1; L ¼ 1,
and the annihilation–break-up transition occurs at R0 ¼ 112:7. The dashed
line indicates RðtÞ vs. t for a freely moving grain boundary ðm ¼ 0Þ.

Fig. 4. The depth of the groove root as a function of time on two different
time scales. Here m ¼ 0:1;L ¼ 1, and the annihilation–break-up transition
occurs at R0 ¼ 112:75.

Fig. 5. The inclination of the grain boundary at the groove root as a
function of time. Here m ¼ 0:1; L ¼ 1, and the annihilation–break-up
transition occurs at R0 ¼ 112:75.
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in Section 4. Note in particular that the fit of the numerical
data with our asymptotic results is quite good until quite
close to annihilation.

4. Asymptotic analysis

In this section, we assume that m and km are small
parameters, where k ¼ L=ðmR0Þ. We reformulate the prob-
lem (2.2)–(2.14) into a fixed domain by introducing the
variables p ¼ r=RðtÞ and s ¼ u=u�ðtÞ, and we also set

Hðp; tÞ¼ R0

RðtÞL hðr; tÞjr¼RðtÞp; Kðp; tÞ¼R0RðtÞ
L

kðr; tÞjr¼RðtÞp; ð4:15Þ

qðs; tÞ¼ 1

u�ðtÞruðu�ðtÞÞ
frðu; tÞ�RðtÞgju¼u�ðtÞs: ð4:16Þ

After some computations, for 0 < t < T we obtain

1

r�uu�
Rt þ

ðr�uu�Þt
r�uu�

q� u�t
u�

sqs þ qt

¼ 1

r�uðu�Þ
2

r�uqss

1þ ðr�uÞ
2q2

s

� u�

Rþ r�uu�q

" #
; 0 < s < 1; ð4:17Þ

where r�u :¼ ruðu�ðtÞ; tÞ,

Rt

R
ðH � pH pÞ þ Ht ¼ �

1

R4p

@

@p

pKpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2m2H 2

p

q
2
64

3
75;

0 < p <1; p – 1; ð4:18Þ

K ¼ 1

p
@

@p

pH pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2m2H 2

p

q
2
64

3
75; ð4:19Þ

to be solved together with the following boundary and ini-
tial conditions

u�ðtÞ=L¼ 1þðRðtÞ=R0ÞHð1�; tÞ; ð4:20Þ

r�uðtÞ¼�
1

2
tan arctanðkmH pð1þ; tÞÞþarctanðkmH pð1�; tÞÞ
� �

; ð4:21Þ

arctanðkmHpð1þ; tÞÞ�arctanðkmH pð1�; tÞÞ¼ 2arcsinðm=2Þ; ð4:22Þ
qð1; tÞ¼ 0; qsð1; tÞ¼ 1; ð4:23Þ
Hð1þ; tÞ¼Hð1�; tÞ; ð4:24Þ

Kð1þ; tÞ¼Kð1�; tÞ; Kpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þk2m2H 2

p

q jð1þ ;tÞ ¼
Kpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þk2m2H 2
p

q jð1� ;tÞ: ð4:25Þ

Hpð0; tÞ¼ 0; Kpð0; tÞ¼0; qsð0; tÞ¼ 0; ð4:26Þ
Hð1; tÞ¼Kð1; tÞ¼ 0; ð4:27Þ
Rð0Þ¼R0; u�ð0Þ¼L; r�uð0Þ¼ 0; ð4:28Þ
qðs;0Þ¼ 0; 0< s<1; Hðp;0Þ¼ 0; 0< p<1: ð4:29Þ

We shall identify the leading order approximation to
(4.17)–(4.29), assuming that H ;K; q; p; s, and t have all
been appropriately scaled so that H ;K; q, and time deriva-
tives are Oð1Þ or smaller. From consideration of (4.21) and
(4.22), we get that r�uðtÞ ¼ Oðð1þ kÞmÞ. From (4.20) and
(4.28), we see that it is reasonable to assume that
u�ðtÞ ¼ OðLÞ and RðtÞ ¼ OðR0Þ. From the estimates outlined
above, we may conclude that kmH p 
 1, r�uqs 
 1,
r�uu�q
 R, and that ðr�uu�Þ�1Rt is far larger that the other
terms on the right-hand side of (4.17). Thus, to leading
order, for 0 < t < T ,

Rt ¼
r�u
u�

qss �
1

R

� �
; 0 < s < 1; ð4:30Þ

Fig. 6. The grain boundary and external surface profiles for R0 < Rc. Upper panels: the shape of the grain boundary during annihilation. Here
m ¼ 0:1;L ¼ 1;R0 ¼ 112:75, with the critical value for R0 being given by R0 ¼ 112:75. Middle panels: the exterior surface and the grain boundary just
before annihilation for the same parameters as above on different scales. Lower panels: the shape of the grain boundary can be seen to be quite close to
parabolic (dotted line) throughout the numerical simulation. The parameters used here are m ¼ 0:1, R0 ¼ 100, and L ¼ 1.
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Rt

R
ðH � pH pÞ þ H s ¼ �

1

R4p

@

@p
½pKp�;

K ¼ 1

p
@

@p
pH p

� �
; 0 < p <1; p – 1;

and along the grain groove,

u�ðtÞ=L ¼ 1þ ðRðtÞ=R0ÞHð1�; tÞ;
r�uðtÞ ¼ �ðkm=2Þ½H pð1þ; tÞ þ H pð1�; tÞ�; ð4:31Þ
qsð0; tÞ ¼ qð1; tÞ ¼ 0; qsð1; tÞ ¼ 1; ð4:32Þ
Hð1þ; tÞ ¼ Hð1�; tÞ; Hpð1þ; tÞ � Hpð1�; tÞ ¼ 1=k;

Kð1þ; tÞ ¼ Kð1�; tÞ; Kpð1þ; tÞ ¼ Kpð1�; tÞ;

with the additional conditions

Rð0Þ ¼ R0; u�ð0Þ ¼ L; r�uð0Þ ¼ 0; qðs;0Þ ¼ 0; 0< s< 1;

H pð0; tÞ ¼ Kpð0; tÞ ¼ qsð0; tÞ ¼ 0; Hð1; tÞ ¼ Kð1; tÞ ¼ 0;

Hðp;0Þ ¼ 0; 0< p <1:

Integrating (4.30) with respect to s over the interval [0, 1]
and using (4.32),

Rt ¼
r�u
u�
� 1

R

� �
: ð4:33Þ

Eq. (4.33) may be understood as expressing motion by
mean curvature, where both components of the principle
curvatures are taken into account. See Fig. 7. Subtracting
(4.33) from (4.30) and assuming r�u=u� to be non-vanishing
for 0 < t < T ,

qss � 1 ¼ 0; 0 < s < 1: ð4:34Þ
From (4.34) and (4.32), it follows that

qðsÞ ¼ 1

2
ðs2 � 1Þ; 0 < s < 1; ð4:35Þ

which predicts the grain boundary profile to be parabolic,
as seen in Fig. 6.

To leading order, for 0 < t < T , we have obtained the
following reduced description for the coupled dynamics

Rt

R
ðH � pH pÞ þ Ht ¼ �

1

R4p

@

@p
pKp

� �
;

K ¼ 1

p
@

@p
pH p

� �
; 0 < p <1; p – 1; ð4:36Þ

Rt ¼
r�u
u�
� 1

R

� �
; ð4:37Þ

Hð1þ; tÞ ¼ Hð1�; tÞ; H pð1þ; tÞ � Hpð1�; tÞ ¼ 1=k; ð4:38Þ
Kð1þ; tÞ ¼ Kð1�; tÞ; Kpð1þ; tÞ ¼ Kpð1�; tÞ; ð4:39Þ
Hpð0; tÞ ¼ Kpð0; tÞ ¼ Hð1; tÞ ¼ Kð1; tÞ ¼ 0; ð4:40Þ
Rð0Þ ¼ R0; Hðp; 0Þ ¼ 0; 0 < p <1; ð4:41Þ
u�ðtÞ=L ¼ 1þ ðRðtÞ=R0ÞHð1�; tÞ; ð4:42Þ
r�uðtÞ ¼ �ðkm=2Þ½H pð1þ; tÞ þ H pð1�; tÞ�: ð4:43Þ

Thus, to leading order, the dynamics are given in terms a
PDE for Hðp; tÞ, which describes the exterior surface, cou-
pled with an ODE for RðtÞ, the distance of the groove root
from the radial axis of symmetry of the system.

The system (4.36)–(4.43) contains three dimensionless
parameters, m, R0, and L, with k being determined by
k ¼ L=ðmR0Þ. There are two asymptotic limits of (4.36)–
(4.41), (4.43) which can be readily considered.

(I) Suppose that R0 is quite large, and that
1=k ¼ mR0=L ¼ Oð1Þ. By (4.38), (4.43), r�uðtÞ ¼
Oðð1þ kÞmÞ, and at least initially u�ðtÞ � L and
RðtÞ � R0. Hence (4.37) implies that Rt � 0.
Returning to (4.36)–(4.43), we now see that to
leading order the evolution should be given by

H t ¼ �
1

R4p

@

@p
½pKp�; K ¼ 1

p
@

@p
½pH p�; 0 < p <1; p – 1;

Hð1þ; tÞ ¼ Hð1�; tÞ; Hpð1þ; tÞ � Hpð1�; tÞ ¼ 1=k;

Kð1þ; tÞ ¼ Kð1�; tÞ; Kpð1þ; tÞ ¼ Kpð1�; tÞ;
H pð0; tÞ ¼ Kpð0; tÞ ¼ Hð1; tÞ ¼ Kð1; tÞ ¼ 0;

Hðp; 0Þ ¼ 0; 0 < p <1;

Fig. 7. Top panel: the deviation of the speed of the grain boundary from
that of a freely moving grain boundary. Middle panel: the deviation of the
speed of the grain boundary from the asymptotic prediction, (4.53). Lower
panel: the deviation of the speed of the grain boundary from the
asymptotic prediction, (4.33). The parameters used here are
m ¼ 0:1;R0 ¼ 20, and L ¼ 0:25.
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with RðtÞ � R0. This system can be considered as a radial
variant of Mullins’ equation for thermal grooving [5,16],
and break-up should be expected.

(II) Suppose that R0 is large, but not too large in
that we set k ¼ L=mR0 ¼ m�a where 0 < a < 1.
Then, again (4.38), (4.43) imply that r�uðtÞ ¼
Oðð1þ kÞmÞ, and that at least initially, u�ðtÞ ¼
OðLÞ. Hence (4.37) implies that RðtÞ will com-
mence shrinking, largely uninfluenced by the
evolution of Hðp; tÞ. Under these circumstances,
Htðt; pÞ in turn can be expected to be small, and
Hðp; tÞ can be expected to vary primarily in the
close proximity of the groove root.

It is possible to understand the structure of this solution
by describing it in terms of an “inner” or “corner” solution
designed to capture the behavior of the solution in the prox-
imity of the groove root, and this “inner” or “corner” solu-
tion must “matched up” with “outer” solutions describing
the behavior of Hðp; tÞ away from the groove root. In order
to obtain a description of the “inner” or “corner” solution,
which is expected to vary only slightly and only over a small
spatial interval, we introduce the variables

q ¼ ðp � 1Þ=d1; y ¼ 1

d2

Hðp; tÞjp¼1þd1q; ð4:44Þ

and where d1; d1 are small parameters which are set so that
d2=d1 ¼ 1=k and d1 ¼ R�2=3

0 .
In terms of the variables (4.44) we get the following

quasi-static problem to leading order,

Rt

R
yq ¼

1

R4d3
1

yqqq; �1 < q <1; ð4:45Þ

yð0þ; tÞ ¼ yð0�; tÞ; ð4:46Þ
yqð0þ; tÞ � yqð0�; tÞ ¼ 1; ð4:47Þ
yqqð0þ; tÞ ¼ yqqð0�; tÞ; ð4:48Þ
yqqqð0þ; tÞ ¼ yqqqð0�; tÞ; ð4:49Þ

where

u�ðtÞ=L ¼ 1; r�uðtÞ ¼ �
m
2
½yqð0þ; tÞ þ yqð0�; tÞ�;

Rt ¼
r�u
u�
� 1

R

� �
: ð4:50Þ

The far-field conditions have not been included in the
problem for the inner solution, as the far-field conditions
should be employed in the solution of the outer problems,
which will later influence the inner solution during the
matching process. Note that in (4.45)–(4.50), the governing
equation for the evolution of yðq; tÞ can be seen to be quasi-
static, with the time variation dictated by RtðtÞ as pre-
scribed in (4.50). Due to the possible appearance of early
transients before the quasi-static description becomes rele-
vant, initial conditions have not been explicitly included in
(4.45)–(4.50).

Since we expect the grain located at the origin to be
shrinking, we shall assume that
wðtÞ :¼ d3

1R3Rt ¼ d3
1R3½r�u=u� � 1=R� < 0. We may also

expect the outer solutions to be bounded (given in terms
of the original variables). With this in mind, we find that
the solution to (4.45)–(4.50) is

yðqÞ¼Cþe�cq=2 1

3c
cos

ffiffiffi
3
p

cq=2
� �

� 1ffiffiffi
3
p

c
sin

ffiffiffi
3
p

cq=2
� �� �

q>0; ð4:51Þ

yðqÞ¼Cþ 1

3c
ecq; q<0; ð4:52Þ

where c ¼ w1=3 and C is a constant to be determined by
matching with the solution to the outer problems. From
(4.51), (4.52) and (4.43), we obtain that r�uðtÞ ¼ m=6. Simi-
larly, we get from (4.43) and (4.44), noting that d2 is small,
that to leading order u�ðtÞ ¼ L. Using these approximations
in (4.37), we now find that to leading order

Rt ¼
m
6L
� 1

R

� �
; ð4:53Þ

which corresponds to Eq. (1.1) with r�u=u� ¼ m=6L, as dis-
cussed in the Section 1 (see Figs. 7 and 8). A fuller descrip-
tion of the solution and how the inner solution matches
with the outer solutions will be given elsewhere [16].

5. Discussion and conclusions

Our results show that in a thin film, grain growth is
strongly affected by the exterior surfaces. This differs from
the results of the analysis for a single shrinking grain
attached to one external surface in a 3-D geometry [15],
where the kinetics were almost unaffected by the surface.
We found that the exterior surface does not allow the for-
mation of a stationary catenoidally shaped grain boundary
which stops the grain boundary migration, as suggested by
Mullins [5] and which served as the basis for the simula-
tions in Ref. [6]. Nevertheless, Mullins’ perspective [5] helps
in understanding our results. In our geometry there are two
special shapes for the grain boundary. One is catenoidal,
which is stationary if it can be realized, since the principle

Fig. 8. Comparison of numerical data (scattered dots) with our asymp-
totic predictions (solid line) which correspond to the solution of
Rt ¼ m=ð6LÞ � 1=R. The parameters used here are m ¼ 0:1, R0 ¼ 10, and
L ¼ 1.
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curvatures are in different directions and their net effect
balances out. The second is a cylindrically shaped grain
boundary, where one component of the mean curvature
vanishes and the other component drives the grain bound-
ary migration; this corresponds to a freely moving grain
boundary whose velocity is apparently maximal, except
for the motion of the grain boundary just prior to annihi-
lation when both principle curvatures are in the same direc-
tion and acceleration occurs.

The catch is that neither of these special shapes can be
precisely achieved when 0 < m < 2, since the former
requires that the groove serve an anchor for grain boundary
and the latter requires that m ¼ 0. If 0 < m
 1, the inclina-
tion of the grain boundary, ru, is small, and thus the grain
shape should be close in some sense to that of a “freely mov-
ing” grain boundary. By looking at Eq. (4.53), we see that if
the radius of the grain boundary is much larger than the film
thickness, the in-plane component of the curvature becomes
important and the relative effect of the 1=r component
decreases. We found that while the grain boundary and
grain groove remain mobile, delay in the grain boundary
migration can allow the groove root to grow and lead to
voiding. The competition between two trends: shrinking
of the grain and growth of the groove, gives rise to an anni-
hilation–break-up transition which can be expressed in
terms of a critical value, R� ¼ R�ðL; mÞ, of the initial radius
of the embedded grain, as indicated in Fig. 2. The value
R� ¼ R�ðL; mÞ can be interpreted as a generalization of the
notion of critical curvature employed in the simulations in
Ref. [6]. While for L� 1;R� depend linearly on L, when
L � 0:1� 0:5 or smaller, R� is seen to depend nonlinearly
on L; this change in the nature of the annihilation–break-
up transition occurs at nanoscale film thicknesses.

Note that our asymptotic analysis also predicts a transi-
tion between the two trends. When the (dimensionless)
parameters m and L=R0 are small, then to leading order
the equations of motion can be written as a PDE for the
exterior surface coupled with an ODE for grain boundary
motion, and the grain boundary shape is predicted to be
parabolic. In order to understand when the transition
occurs it is necessary to distinguish between the relative size
of the two small parameters. When mR0=L ¼ Oð1Þ, i.e. the
two small parameters are comparable in size, then a radial
variant of Mullins’ equation of motion for thermal groov-
ing is predicted and break-up can be expected to occur. If
mR0=L
 1, or stated more precisely, if mR0=L ¼ OðmaÞ
with 0 < a < 1, then to leading order, the shape of the exte-
rior surface near the groove root should be quasi-static,
with the velocity of the groove root dictated by (1.1).

Our numerics indicate further that the rate of groove
growth in the moving grain boundary is greatly delayed rel-
ative to the rate of the groove growth in stationary grain
grooves. We may estimate pinch-off time by tpinch-off �
ð
ffiffiffi
2
p

Cð5=4ÞL=mÞ4, the time to pinch-off for a flat stationary
grain boundary [12, Eq. 30]. Noting that Cð5=4Þ � 0:91,
this yields the estimates tpinch-off � 105:5 when m ¼ 0:1;
L ¼ 0:25, and tpinch-off � 2:7	 104 when m ¼ 0:1; L ¼ 1.

These estimates fall far short of our numerical results; in
Fig. 2 the time to break-up can be seen to be about 1761
when m ¼ 0:1; L ¼ 0:25, and in Fig. 3 the time to break-
up can be seen to be about 8	 105 when m ¼ 0:1;
L ¼ 1:0. The simulations show acceleration in the shrink-
age of the grain just prior to annihilation, as has been
observed experimentally [7,18].

Our results can be applied to the “wedge-shaped geom-
etry” investigated experimentally by Rath and Hu [19]. We
believe that the anomalously slow rate of grain boundary
motion in Al observed in Ref. [19] can be explained in
terms of the effect of the exterior surface and surface groov-
ing during grain boundary motion as we saw in our simu-
lations. Rath and Hu [19] remarked that they observed
grain grooving in their experiments. This is of interest, as
elsewhere, see e.g. Ref. [4] and references therein, grooving
had not been seen to occur in Al due to an oxidation layer
on the exterior surface. We cannot confirm the explanation
given in Ref. [20] that the slow dynamics observed in Ref.
[19] were caused by jerky motion, as we did not see any
indication of jerky motion in our simulations.

Ideally we should like to generalize our results to a true
polycrystalline setting. Were we to look at a segment of a
groove root line lying on the exterior surface of a thin film
from above, then by interpreting RðtÞ as the locally defined
in plane curvature of the groove root, (1.1) and (4.53) can
be used to prescribe the locally defined in-plane velocity.
Nevertheless, to complete the description of the motion
of an array of groove roots, it is necessary to understand
the quadruple junctions which form where groove roots
meet and intersect along the exterior surface and accompa-
nying phenomena such as pitting [10,9]; this step lies
beyond the scope of the present analysis.

It is a happy coincidence that, on one hand, since the
dimensions of the nanofilm system are on the order of
about 10 nm, or in other words, about 100 interatomic dis-
tances, continuum models can be realistically implemented
for describing nanofilm systems, and on the other hand,
voiding in thin films takes place on a laboratory time scale.
This allows the annihilation–break-up transition both to be
successfully modeled with continuum models and to be
realized experimentally on a laboratory time scale. Note
that for thicker films, a continuum model would be justi-
fied, but the transition would be become difficult to explore
experimentally.
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Appendix A

Claim. There do not exist steady-state solutions to the
system (2.2)–(2.13).
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Proof of the claim. Suppose there did exist steady-state
solutions to (2.2)–(2.13). Then setting ht ¼ 0 in (2.3), and
noting (2.10), (2.11), we get

rkrffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

r

q ¼ 0:

The boundary conditions (2.9), (2.13) imply that

k ¼ 0; 0 < r <1; r – RðtÞ: ð6:53Þ

By considering (2.4) and (2.11), we get that

rhrffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

r

q ¼ 0; 0 < r < RðtÞ;

and hence

h ¼ c1 ð¼ constantÞ; 0 < r < RðtÞ: ð6:54Þ

By (6.53) and (2.4), it follows that

rhrffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

r

q ¼ c2 ð¼ constantÞ; RðtÞ < r <1;

whence

hr ¼
c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � c2
2

p : ð6:55Þ

However, (6.55) has only unbounded solutions which can-
not satisfy (2.13), unless c2 ¼ 0. Thus setting c2 ¼ 0, (6.55)
and (2.6) imply that

h ¼ c1; 0 < r <1: ð6:56Þ

Note that (6.56) contradicts (2.7) unless m ¼ 0. To obtain a
contradiction also when m ¼ 0, we continue as follows. Set-
ting rt ¼ 0 in (2.2) and noting (2.8), (2.12),

ruu

1þ r2
u

� 1

r
¼ 0; 0 < u < u�; ruð0Þ ¼ ruðu�Þ ¼ 0: ð6:57Þ

However, the equation in (6.57) implies that ruu > 0 which
in conjunction with ruð0Þ ¼ 0 yields that ruðu�Þ > 0, which
contradicts the second boundary condition in (6.57). h
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