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A variational principle in optics
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We derive a new variational principle in optics. We first formulate the principle for paraxial waves and then
generalize it to arbitrary waves. The new principle, unlike the Fermat principle, concerns both the phase and
the intensity of the wave. In particular, the principle provides a method for finding the ray mapping between
two surfaces in space from information on the wave’s intensity there. We show how to apply the new principle
to the problem of phase reconstruction from intensity measurements. © 2004 Optical Society of America
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1. INTRODUCTION
The Fermat principle is one of the pillars of optics. It lies
at the foundations of geometrical optics, where it provides
a theoretical and computational tool to find ray trajecto-
ries and hence the phase of a wave. The principle,
though, only concerns rays and provides no information
on intensity transport. The main goal of this paper is to
derive a new variational principle in optics that relates
the phase and the intensity of a wave. The new principle
is formulated in terms of the geometrical-optics approxi-
mation of the wave equation.

Fermat postulated that a light ray travels between two
specified points so as to minimize the action * ndl, where
n is the refraction index of the medium. It was later
shown that this principle is equivalent to the eikonal
equation. In our setup, we are not given the terminal
points of a ray. Instead, we are given two intensity dis-
tributions on two planes. Our principle determines both
the end points of each ray and the ray trajectory.

One of the promising applications of the new principle
is as a means for determining the wave’s phase from in-
tensity measurements. We therefore start by recalling in
Section 2 the idea of the transport-of-intensity equation
(TIE) and curvature sensors. This theory was developed
for paraxial waves. Therefore we first formulate our new
principle in the paraxial regime and for nonhomogeneous
media. The theory is developed in Section 3 in full detail.
In particular, we explain there the precise meaning of
paraxiality in our approximations. This explanation
leads us in a natural way to derive (Section 4) the general
form of our principle. Finally, in Section 5 we summarize
and discuss our results. We also briefly discuss there ex-
tending the principle to include singular solutions and
practical aspects such as the numerical solution of the
variational problem. The numerical questions will be ad-
dressed in more detail, together with simulation results,
in a sequel.

2. PHASE-RECONSTRUCTION PROBLEM
A central problem in optics is to determine the phase of a
wave. The problem is particularly hard when the phase
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is not very close to being planar or spherical, and there-
fore interferometry methods are difficult to apply. The
need to find the phase arises in a variety of applications
including adaptive optics, astronomy, and ophthalmic op-
tics.

A widely used general phase sensor is the Hartmann–
Shack device. It consists of an array of lenslets that con-
vert an incoming beam into spots of light on a detection
screen. This sensor has a number of drawbacks: The
resolution is limited by the size of lenslets, the location of
the spot centroids is hard to determine accurately, and
the transformation from the location of the centroids of
the spots to the phase gradient is only approximate.

In contrast to phase determination, it is relatively easy
to measure the wave’s intensity. It is therefore tempting
to seek methods for finding the phase from intensity mea-
surements. Indeed, Teague1 proposed such a phase sen-
sor. His method was further developed by Roddier2 and
others. To explain the idea behind such sensors (some-
times called curvature sensors), we consider a complex-
valued wave u in the Fresnel regime where the wave
equation in a homogeneous medium is approximated by
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Here z is the main direction of propagation, u is the wave
function, k is the wave number, and ¹ and D denote, re-
spectively, the gradient and Laplacian operators in the
plane orthogonal to z. Writing u 5 A exp(ikf ), we ob-
tain for the real and imaginary parts of Eq. (1)
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The first equation can be written more conveniently as an
equation for the intensity I 5 A2:
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Equation (4) is called the TIE. Teague1 pointed out that
Eq. (4) can be thought of as an elliptic partial differential
equation for the phase f in terms of the intensity I. Thus
he considered Eq. (4) over some domain D in a plane z
5 z0 and solved it under prescribed boundary conditions
(the Dirichlet problem). We note that, strictly speaking,
the phase is kf, but we shall refer here to f alone also as
the phase.

The difficulty with Teague’s method is that the values
of the phase at the boundary ]D are not easy to measure.
Therefore a number of people suggested alternative algo-
rithms related to Eq. (4) that attempt to resolve this is-
sue.

Roddier2 proposed to use homogeneous Neumann
boundary conditions at the boundary ]D instead of the
Dirichlet conditions but did not justify this proposal.
Gureyev and Nugent3 analyzed more carefully the bound-
ary behavior of the wave u. They pointed out that, in
practice, the domain D is determined by the regime where
the intensity is positive (essentially the image of the ap-
erture). Then they argued that since I vanishes at ]D,
Eq. (4) is singular and has a unique solution without any
boundary condition. Lee and Rubinstein4 showed that a
more delicate analysis of the boundary behavior of I is
needed. Indeed, Eq. (4) has a unique (up to an additive
constant) solution without any boundary condition only if
I vanishes at ]D at a suitable rate. They also devised
numerical methods to solve such equations.

Notice that the TIE is only one half of the Fresnel equa-
tion. Clearly, a proper solution must satisfy the other
half [Eq. (3)], too. This raises the following question:
Suppose we measure the intensity I at two planes z
5 Z1 , z 5 Z2 ; can we use this information to determine
the phase by considering jointly Eqs. (4) and (3)? In fact,
a measurement of the intensity at two planes is also re-
quired for the TIE, since we need to find not only the in-
tensity I but also its derivative Iz . Computing this de-
rivative requires measuring the intensity at two nearby
planes. In the question we posed above, however, the
two planes can be arbitrarily located.

A partial answer to our question was given by van Dam
and Lane.5 They realized that if the wave, confined to
both observation planes, depends only on one variable
and if the rays do not intersect, one can order the initial
and terminal points of the rays on the two respective
screens such that all successive pairs of rays hold be-
tween them the same amount of total intensity. Once the
ray end points are known, one can determine the phase
slopes and from them the phase itself. Van Dam and
Lane also tried to extend this approach to the general
two-dimensional case. They proposed to sample the in-
tensity, as in the one-dimensional case, in many orienta-
tions and to apply the Radon transform to deduce the
phase slopes from the obtained integrals. No justifica-
tion, however, was given for this method, and it is not
clear why it should give a good approximation to the
phase slopes for arbitrary intensity distributions on the
detection screens.
We shall use the new variational principle to solve the
problem we posed. We also present a preliminary analy-
sis of a number of numerical schemes for actually comput-
ing the phase. To incorporate Eq. (3) in the analysis, we
further express the phase f in the form

f 5 z 1 c ~x, z !, (5)

where x denotes a point in the plane R2 and c is the per-
turbation of the phase about the planar term z. Substi-
tuting Eq. (5) into Eq. (3), we obtain for c (x, z)
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In the small-wavelength approximation we neglect the
term on the right-hand side and replace Eq. (6) with
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Our discussion on the phase reconstruction was limited
to homogeneous media. The variational principle we
shall derive, however, is applicable to arbitrary media.
When the refraction index n is not constant, we need to
include the term 1

2 (n2 2 1) in the right-hand side of Eq.
(6). Thus the optical problem we consider consists of the
following equations and boundary conditions:
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Here x P R2, z P @Z1 , Z2#, I(z 5 Z1 , x) 5 I1(x), and
I(z 5 Z2 , x) 5 I2(x), where I1 and I2 are two given in-
tensity distributions. Equations (8) and (9) together with
the side conditions will be denoted collectively as problem
(Op). In Section 3 we show that problem (Op) can be
solved by certain optimization problems.

3. VARIATIONAL PROBLEM I: THE
PARAXIAL LIMIT
Consider two planes P1 : z 5 Z1 and P2 : z 5 Z2 . Let
I1 and I2 be two nonnegative functions given on P1 and
P2 . Optically, the functions I1 and I2 are the measured
intensities; mathematically, however, we can consider
them arbitrary density functions. We assume that the
intensities are normalized to 1, and that they have finite
second moments:

E I1~x !dx 5 E I2~x !dx 5 1,

E x2Ii~x !dx , `, i 5 1, 2. (10)

We recall from geometrical optics that if a point x
P P1 is mapped by a ray into a point y P P2 , if the re-
fraction index near P1 and P2 is the same, and if the ray
is approximately orthogonal to the planes, then the inten-
sities are related by6
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I1~x ! 5 I2(T~x !)J~T !. (11)

Here T(x) is the ray mapping from P1 to P2 , and J(T) is
the Jacobian of this mapping. We shall say that a map-
ping T satisfying the relation (11) transports I1 to I2 .
We use the formal notation

T#I1 5 I2 . (12)

More generally, a mapping T (not necessarily continuous)
transports I1 to I2 if and only if

E z(T~x !)I1~x !dx 5 E z~x !I2~x !dx, ;z P C0~R2!,

(13)

where C0(R2) is the space of all continuous functions in
the plane with compact support. Our first variational
principle, denoted by problem (Mp), is the following:

Find a map T̄ such that T̄#I1 5 I2 and

M~I1 , I2 , T̄ ! ª E Q(x, T̄~x !)I1~x !dx

< E Q(x, T~x !)I1~x !dx, ;T#I1 5 I2 ,

(14)

where the action Q is given by

Q~x, y ! ª Q~x, y, Z1 , Z2!

[ min E
Z1

Z2H 1

2
Udx

dz
U2

1 P@x~z !, z#J dz (15)

and where the minimization is among all orbits x(z) such
that x(Z1) 5 x, x(Z2) 5 y.

In the homogeneous case (P [ 0) the action reduces to

Q~x, y ! 5
ux 2 yu2

2~Z2 2 Z1!
.

In this case our variational principle (Mp) becomes the
quadratic Monge problem (Mpq):

Find a map T̄ such that T̄#I1 5 I2 and

E uT̄~x ! 2 xu2I1~x !dx < E uT~x ! 2 xu2I1~x !dx,

;T#I1 5 I2 . (16)

We shall show that the optimal mapping T̄ is the ray
mapping of the optical problem. For this purpose, we re-
late problem (Op) to problem (Mp) through several addi-
tional equivalent optimization problems. We start by in-
troducing a new problem, denoted by (Wp), and prove
that its solution is the pair (I, c) that solves (Op).

Theorem 1. Let s 5 s(x, z) > 0 and v 5 v(x, z)
P R2 be solutions of the following optimization problem:

inf
s,v

W~I1 , I2 ; P ! 5 inf
s,v

E
Z1

Z2E S 1

2
suvu2 1 Ps D dxdz,

(17)

subject to the constraints
]s

]z
1 ¹ • ~ sv ! 5 0, Z1 < z < Z2 ,

s~x, Zi! 5 Ii~x !, i 5 1, 2. (18)

Then

s 5 I, v 5 ¹c, (19)

where I and c solve (Op).
Proof. Recall that any vector field in R2 is the orthogo-

nal sum of a gradient ¹w and a vector field w such that
¹ • (s(x, z)w) 5 0. This decomposition holds for any z.
Setting v 5 ¹w 1 w, we obtain

E s~x, z !uv~x, z !u2dx 5 E s~x, z !u¹w~x, z !u2dx

1 E s~x, z !uw~x, z !u2dx.

Clearly, for any candidate s, the choice w 5 0 reduces the
energy W without affecting constraint (18). Therefore
the optimal choice for v must be of the form v 5 ¹w for
some potential w.

To further characterize w, we equate to zero the first
variation of the energy in Eq. (17), taking into account
constraints (18). We therefore write s 5 I 1 ea, w 5 c
1 eb, where I and v 5 ¹c solve constraint (18) and e is
a small positive number. Substituting s and w into con-
straints (18), we obtain

]a

]z
1 ¹ • ~a¹c! 1 ¹ • ~I¹b! 5 O~e!. (20)

The first variation of the energy is

dW 5 eEE S 1

2
au¹cu2 1 I¹c • ¹b 1 aP D dxdz

1 O~e2!. (21)

Integrating the second term in the integrand by parts
with respect to the x variable, we obtain for any z
P @Z1 , Z2#:

E I¹c • ¹bdx 5 2E c¹ • ~I¹b!dx.

Integrating now on R2 3 @Z1 , Z2#, using Eq. (20), and
then performing another integration by parts, we get

EE I¹c • ¹bdxdz 5 EE F ]a

]z
1 ¹ • ~a¹c!Gcdxdz

1 O~e!

5 2EE aS ]c

]z
1 u¹cu2D dxdz

1 O~e!,

where we used the fact that constraints (18) imply
a(x, Z1) 5 a(x, Z2) 5 0. Substituting this equation
into Eq. (21) and equating the first variation to zero, we
obtain that c solves Eq. (9), and then constraint (18) im-
ply that I solves Eq. (8), as required.

We proceed to show that the infimum of the functional
W equals M defined in expression (14). Let (I, c) be the
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solution of problem (Wp). We use the phase c, i.e., the
solution to the Hamilton–Jacobi equation (9), to define
the following flow:

dx̄

dz
5 ¹c(x̄~z !, z), x̄~Z1! 5 x. (22)

The flow (22) induces a mapping

TZ1

z ~x ! ª x̄~z !. (23)

Proposition 2. The mapping (23) transports I1 to
I(x, z).

Proof. We define

Ĩ~x, z ! 5 J~TZ1

z !I(TZ1

z ~x !, z). (24)

A standard result in the theory of ordinary differential
equations states that the Jacobian j of the mapping t in-
duced by the flow generated by an equation of the form
dx/dt 5 f(x) satisfies the identity dj/dt 5 j¹ • f. Apply-
ing this identity to the flow (22), we find

dJ~Tz!

dz
5 J~Tz!Dc ~Tz, z !. (25)

Therefore

] Ĩ

]z
5 J~TZ1

z !S IDc 1 ¹I • ¹c 1
]I

]z D STZ1

z ,z D
5 0,

where the last equality follows from the assumption that
I satisfies Eq. (8). Since Ĩ does not depend on z, we can
write Ĩ(x, z) 5 Ĩ(x, Z1) 5 I1 . Replacing Ĩ(x, z) in Eq.
(24) with I1 we obtain

I1~x ! 5 J~TZ1

z !I(TZ1

z ~x !, z), (26)

which, on recalling Eq. (11), proves our assertion.
We are now ready to state the main result of this sec-

tion.
Theorem 3. The mapping T 5 TZ1

z5Z2, where TZ1

z is

defined in Eq. (23), is the optimal mapping T̄, i.e.,

T̄ 5 TZ1

Z2. (27)

In addition,

inf
s,v

W~I1 , I2 ; P ! 5 E Q(x, T̄~x !)I1~x !dx.

Proof. Let (I, c) be a solution to the problem (Wp).
Integrating the Hamilton–Jacobi equation (9) along an
arbitrary orbit x 5 j(z), we obtain

d

dz
c(j~z !, z) 5 ¹c •
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1 P(j~z !, z). (28)

We first use identity (28) for the special case j 5 x̄. In-
tegrating Eq. (28) from Z1 to Z2 , we write
c(TZ1

Z2~x !, Z2) 2 c ~x, Z1!

5 E
Z1

Z2F1

2
Udx̄

dz
U2

1 P(x̄~z !, z)Gdz > Q(x, T~x !). (29)

Thanks to expression (29) and to the conclusion we de-
rived above that T transports I1 to I2 , we can write

E c ~x, Z2!I2~x !dx 2 c ~x, Z1!I1~x !dx

> E Q(x, T~x !)I1~x !. (30)

We now show that the left-hand side of expression (30)
is nothing but infs,v W(I1 , I2 ; P) in a disguised form.
We thus calculate

E~ c, I1 , I2! ª E c ~x, Z2!I2~x !dx 2 c ~x, Z1!I1~x !dx

5 E
Z1

Z2E ]z(c ~x, z !I~x, z !)dxdz

5 E
Z1

Z2E S ]I

]z
c 1 I

]c

]z D dxdz.

Using Eqs. (8) and (9) and then integrating by parts, we
find that the last expression equals

5 E
Z1

Z2E F2c¹ • ~I¹c! 2
1

2
Iu¹cu2 1 IPGdxdz

5 E
Z1

Z2E S 1

2
Iu¹cu2 1 IP D dxdz 5 W~I1 , I2 ; P !.

We therefore obtain from expression (30)

W~I1 , I2 ; P ! > E Q(x, T~x !)I1~x !dx

> E Q(x, T̄~x !)I1~x !dx. (31)

To complete the proof, we shall establish now the re-
verse inequality in expression (31). For this purpose we
prove the following:

Proposition 4. Let T be any mapping satisfying
T#I1 5 I2 and let z be any function satisfying the
Hamilton–Jacobi equation (9). Then

E~z, I1 , I2! < E Q(x, T~x !)I1~x !dx. (32)

In particular,

E~ c, I1 , I2! 5 max
z

F E z~x, Z2!I2~x !dx

2 E z~x, Z1!I1~x !dx G , (33)

where the maximum is taken over all functions z
5 z(x, z), which satisfy

]z

]z
1

1

2
u¹xzu2 < P~x, z !.

Assuming this proposition, we can substitute the func-
tion c that solves Eq. (9) for z in the left-hand side of ex-
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pression (32), substitute the optimal mapping T̄ for T in
the right-hand side, and conclude that the two inequali-
ties in expression (31) must, in fact, be equalities; this es-
tablishes Theorem 3.

To prove Proposition 4, we return to the integration for-
mula (28). This formula holds for any solution of the
Hamilton–Jacobi equation, so, in particular, it holds for z.
For the orbit we choose the curve that connects x with
T(x) and minimizes the action Q@x, T(x)#. We thus ob-
tain the inequality

z(T~x !, Z2) 2 z~x, Z1! < Q(x, T~x !).

Multiplying the last inequality by I1(x) and integrating
with respect to x, we get

E z(T~x !, Z2)I1~x !dx 2 E z~x, Z1!I1~x !dx

< E Q(x, T~x !)I1~x !dx.

Since T transports I1 into I2 , the first term on the left-
hand side of the last inequality equals *z(x, Z2)I2(x)dx.
This completes the proof of the proposition and the theo-
rem.

Theorem 1 says that the minimizing pair (I, c) for the
functional W is a solution to the problem (Op). Theorem
3 states that the flow induced by c generates the optimal
mapping T̄. Therefore by solving the variational prob-
lem we obtain complete information on the ray mapping
and hence the phase c of problem (Op). Notice that the
functional M(I1 , I2 ; T̄) defines a metric measuring the
distance between the intensities I1 and I2 .

In the special case of the quadratic Monge problem, cor-
responding to the optical setup of a homogeneous me-
dium, the action Q is minimized by the straight line (ray)
connecting x and T(x). Therefore the optimal map T̄ in
this case is given explicitly by

TZ1

Z2~x ! 5 x 1 ¹xc ~x, Z1!~Z2 2 Z1!. (34)

Given two intensity distributions, and assuming that
they are related by the paraxial Fresnel equations, the
variational problem (Mp) provides us with a theoretical
and practical tool to find a phase map that connects these
intensities. The optimization formulation involves the
action Q. It would be interesting to see how this action is
related to the classical Fermat action. This analysis re-
quires us to first understand the asymptotic regime in
which the parabolic wave equation holds for uniform or
nonuniform media.

To study this regime, we introduce a small positive pa-
rameter «. We assume that the refraction index is of the
form

n~x, z ! 5 1 1 «P~x, «1/2z !, (35)

where we assume without loss of generality that the back-
ground refraction index is 1. We then seek solutions of
the eikonal equation (]f/]z)2 1 u¹f u2 5 n2, where f is
the wave’s phase, of the form

f~x, z ! 5 z 1 «1/2c ~x, «1/2z !. (36)
Substituting f into the eikonal equation, we find that to
leading order c satisfies Eq. (9).

The scaling above means that the variation in the re-
fraction index is weak and slowly varying in the z direc-
tion. It also means that we deal with approximately
paraxial waves. Consider now the Fermat variational
principle

min E
x

y

n~x !dl, (37)

where the minimization is over all orbits connecting x and
y and dl is a length element of the orbit. The paraxial
approximation amounts to dl 5 @1 1

1
2 (dx/dz)2#dz. The

scaling for c in Eq. (36) implies that the initial condition
for the ray x(z) must satisfy dx/dz(z 5 Z1) 5 O(«1/2).
Substituting the expansion for dl and the form (35) for n
into the Fermat action [expression (37)], we obtain

min E
x

y

n~x !dl 5 min E
Z1

Z2

~1 1 «P !F1 1
1

2 S dx

dz D
2Gdz

1 o~«!

5 ~Z2 2 Z1! 1 Q~x, y ! 1 o~«!. (38)

Therefore the action Q is indeed an approximation of the
Fermat action.

The mathematical analysis is valid for the optical prob-
lem (Op) regardless of its origin. It is particularly inter-
esting to note that Eqs. (8) and (9) form the semiclassical
limit of the Schrödinger equation. The function P then
has the interpretation of the potential of the physical sys-
tem, and the z coordinate represents time. Therefore the
variational principle (Mp) means that if we are given the
absolute value of the wave function everywhere in space
at two different times Z1 and Z2 we can find the phase of
the wave function at all times t P (Z1 , Z2).

Some of the results presented in this section, and, in
particular, the connection between problems (Mp) and
(Wp) were also derived (by different arguments) for the
special case of the quadratic Monge problem in Refs. 7–9.
Our proofs are formal in the sense that we tacitly assume
that all the functions are sufficiently smooth. A complete
rigorous analysis of existence, uniqueness, and regularity
of the solutions to problems (Mp) and (Wp) is delicate and
lies beyond the scope of this paper. We refer the reader
to Refs. 7 and 8. For the sake of completeness, though,
we list a number of basic results that can be obtained for
our action Q by the tools of these references:

1. There exists a minimizer I 5 I(x, z) of (Wp) that
satisfies the end conditions I(x, Z1) 5 I1(x), I(x, Z2)
5 I2(x). This minimizer may be nonunique.

2. If P is continuously differentiable, then there exists
a maximizer c of E that is a Lipschitz function and satis-
fies the equation (]c/]z) 1

1
2 u¹xcu2 5 P almost every-

where.
3. A lot more is known in the special but important

case of homogeneous media where P [ 0. For example,
if the intensities I1 and I2 are continuous (or even just
L1) functions, then the minimizer of the Monge problem
is unique. Furthermore, a wealth of regularity results
are known in this case.7
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4. VARIATIONAL PROBLEM II: GENERAL
WAVES
We showed that the data embedded in the intensity dis-
tributions given on two planes suffice to find the phase of
a wave in the paraxial regime. This raises the natural
question of whether the result can be extended to general
waves. In this section we provide a positive answer to
this question. One of the basic differences in the general
case is that we should not talk any more of transporting
intensities but rather of transporting radiance functions.
The main ideas are to use the Fermat action itself (in a
suitable form) as the action in the optimization problem
and to phrase the intensity equation as an equation for
the radiance.

We start by formulating the optical setup. Consider a
solution to the Helmohltz equation

Du 1 k2n2~x, z !u 5 0 (39)

of the form u 5 A(x, z)exp@ikf(x, z)#. Expanding as
usual in large k, we obtain6 the eikonal equation
(]f/]z)2 1 u¹f u2 5 n2, for the phase f, and the trans-
port equation

]zS I
]f

]z D 1 ¹ • ~I¹f ! 5 0, (40)

for the intensity I 5 A2. Here, as before, x denotes a
point in the plane orthogonal to the z direction, and ¹ is
the two-dimensional gradient. Since we are not limited
now to paraxial rays, we have some freedom in choosing
the z axis. When considering general waves, it is more
appropriate to analyze the radiance and not the intensity,
since the radiance is the conserved quantity. We there-
fore define the radiance r(x, z) 5 I(]f/]z) 5 I(n2

2 u¹f u2)1/2 and write the transport equation (40) with
respect to it. We consider the case in which the radiance
is given on two parallel planes and thus choose the z axis
to be orthogonal to the planes.

We are now ready to formulate the optical problem (O):
Find the phase function f(x, z) and the radiance function
r(x, z) such that r and f satisfy

]r

]z
1 ¹ • F r

¹f

~n2 2 u¹f u2!1/2G 5 0, Z1 , z , Z2 ,

(41)

S ]f

]z D 2

1 u¹f u2 5 n2, Z1 , z , Z2 ,

(42)

subject to r(z 5 Z1 , x) 5 r1(x), r(z 5 Z2 , x) 5 r2(x),
where r1 and r2 are two given radiance distributions.
The question we pose is whether problem (O) is solvable
and, in particular, whether we can associate it with a
variational principle. The analysis in this section is of-
ten similar to that in Section 3. Therefore we only out-
line the proofs and highlight the differences.

Our second variational problem, denoted by problem
(M), is the following:

Find a map T̄ such that T̄#r1 5 r2 and
E Q(x, T̄~x !)r1~x !dx < E Q(x, T~x !)r1~x !dx,

;T#r1 5 r2 , (43)

where the action Q is given by

Q~x, y ! 5 min E
x

y

ndl

5 min E
Z1

Z2

n~x, z !S 1 1
1

2
Udx

dz
U2D 1/2

dz (44)

and where the minimization is among all orbits x(z) such
that x(Z1) 5 x, x(Z2) 5 y.

We now show that the optimal mapping T̄ is the ray
mapping associated with (O). A key point in the analysis
in Section 3 was the introduction of the corresponding La-
grangian (17). We thus proceed to define an appropriate
Lagrangian and argue that its minimization is equivalent
to the optical problem (O):

Theorem 5. Let r 5 r(x, z) > 0 and v 5 v(x, z)
P R2 be solutions of the following optimization problem:

inf
r,v

W~I1 , I2 ; P !ªinf
r,v

E
Z1

Z2E nrA1 1 v2dxdz, (45)

subject to the constraints

]r

]z
1 ¹ • ~rv ! 5 0, Z1 < z < Z2 ,

r~x, Zi! 5 r i~x !, i 5 1, 2. (46)

Then

v 5
¹f

~n2 2 u¹f u2!1/2
, (47)

where f solves Eq. (42).
Proof. We first characterize v. For this purpose we

introduce a Lagrange multiplier w, and, fixing r, look for

inf
v
EE FrnA1 1 v2 1 wS ]r

]z
1 ¹ • ~rv !D Gdxdz.

(48)

Integrating by parts the term multiplying w, we obtain

inf
v
EE rS nA1 1 v2 2

]w

]z
2 v • ¹w D dxdz

1 E wr2dx 2 E wr1dx. (49)

Using the inequality

nA1 1 v2 2 An2 2 p2 > v • p, (50)

which holds for any vectors v and p, we obtain that the
functional is minimized at

v 5
¹w

~n2 2 u¹wu2!1/2
. (51)

Notice that, for this choice of v, the functional W takes
the form
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W 5 EE rF ~n2 2 u¹wu2!1/2 2
]w

]z Gdxdz

1 E wr2dx 2 E wr1dx. (52)

The characterization of the Lagrange multiplier w as the
solution of the eikonal equation (42) is similar to the proof
of Theorem 1, so we do not spell out the details.

By the same method of proof as for Proposition 2, one
can show that the flow TZ1

z (x) 5 x̄(z), defined by

dx̄

dz
5 v 5

¹f

~n2 2 u¹f u2!1/2
, x̄~Z1! 5 x, (53)

transports r1 . We thus proceed to show that this flow in-
duces the optimal flow T̄. The only difference from the
proof of Theorem 3 is in the step (28) where we integrated
the eikonal equation. We need to integrate an arbitrary
solution c of the eikonal equation (42) along an arbitrary
orbit. We obtain

d

dz
c(j~z !, z) 5 ¹c •

dj

dz
1

]c

]z
5 ¹c •

dj

dz

1 ~n2 2 u¹cu2!1/2

< nF1 1 S dj

dz D
2G1/2

, (54)

where we used inequality (50).
We can therefore state the following:
Theorem 6.

(1) The optimal mapping T̄ for problem (M) induces a
ray mapping for optical problem (O).

(2)

inf
r,v

E
Z1

Z2E rnA1 1 v2dzdx 5 inf
T
E Q(x, T~x !)r1dx

5 sup
f
E fr2dx 2 E fr1dx,

(55)

where the first integral is minimized under constraints
(46), the second integral is minimized among all maps T
that transport r1 to r2 , and the last integral is maxi-
mized among all functions f that satisfy (]f/]z)2

1 u¹f u2 < n2.

5. DISCUSSION
The theory developed in the previous sections provides us
with a useful tool for determining the phase from inten-
sity measurements. The optical problem (Op) or (O) is
hard to solve, since we are given information on the in-
tensity or radiance at two separate planes, constrained by
certain differential equations connecting them. The
variational problem (Mp) or (M), on the other hand, pro-
vides a direct variational characterization of the solution.

One may interpret our result as a way to give a physi-
cal meaning to the notion of a ray. Rays are mathemati-
cal rather than physical entities. One cannot measure
rays directly. The variational principle we derived pro-
vides a means for measuring rays. We actually measure
intensities, and then, through the mathematical proce-
dure of finding the optimal mapping, we identify the indi-
vidual rays.

Another interesting conclusion relates to the transport
of the radiance r [Eq. (41)]. One may consider two adja-
cent planes and use the measured r on both of them to es-
timate rz . Equation (41) can then be treated as an equa-
tion for the unknown phase f. Therefore Eq. (41) can be
called the transport-of-radiance equation. This equation
defines a nonlinear curvature sensor that replaces the
TIE (8) in the nonparaxial case.

The solution of the variational problems (Mp) and (M)
is nonsingular in the sense that we now explain. Con-
sider first the paraxial homogeneous case [problem (Mp)
with constant refraction index]. The solution of the
transport equations (8) and (9) may develop caustics.
From the ray-mapping perspective, a caustic is a manifold
in space in which rays intersect. The solution to our
variational principle (Mpq) cannot capture such singu-
larities; namely, the optimal ray mapping T̄ does not have
intersecting rays. To see why, look at a discrete approxi-
mation of the problem by finitely many rays, each carry-
ing with it an equal amount of intensity. Consider two
rays, xi(z), i 5 1, 2, connecting xi(Z1) 5 ai and xi(Z2)
5 bi . If the rays intersect at some point t P (Z1 , Z2),
we can swap the orbits between t and Z2 . The new or-
bits also transport I1 to I2 , and the integral
* Q(x, T̄(x))I1(x) is unchanged by the swapping. In
general, however, the newly generated orbits do not mini-
mize this integral among all orbits connecting a1 to b2

and a2 to b1 . Thus the map T̄ cannot be optimal.
Since caustic solutions are, of course, feasible for appro-

priately selected I1 and I2 , it follows that there are solu-
tions for Eqs. (8) and (9) that are not captured by the
variational problem (Mpq). In fact, the entire formula-
tion must be modified, since the optical problem (Op) is
not well defined in the presence of caustics. A general-
ized formulation of the paraxial equations (8) and (9) can
be written down in terms of the Wigner transform of the
wave function. The Wigner transform describes the
wave in phase space. The geometrical-optics equations
for the wave function are replaced by an appropriate
Liouville equation for its Wigner transform. Indeed,
in Ref. 10 we show that certain critical points (other
than the global minimum) of the functional
* Q(x, T(x))I1(x)dx (under the constraint T#I1 5 I2)
provide ray mappings associated with solutions of the
Liouville equation for the Wigner transform that are as-
sociated with caustics for the solutions of Eqs. (8) and (9).

Another type of singularity in wave problems is the vor-
tex or phase singularity.11 Vortices are associated with
zeros of the intensity function. It is known that the in-
tensity distributions alone cannot determine the degree
(circulation) of the phase around the zeros of I, and there-
fore the solution to the optical problem (Op) may not be
unique. In such cases, the variational principle (Mpq)
captures the solution for which the phase has degree zero
around all zeros of I. This is a consequence of a deep re-
sult by Brenier12 stating that in the (Mpq) problem the
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optimal mapping T̄ is a gradient of convex function C.
Recalling Eq. (34), we conclude c 5 1/(Z2 2 Z1)(C
2 uxu2). Since C is convex, it must be a single-valued
function, and the last formula implies that c is also single
valued. Therefore the degree of c cannot be nonzero.
Our discussion of singular solutions was restricted to the
paraxial regime. Upgrading it to more general wave
problems is very challenging, and we are now pursuing
this question.

It remains to look for solution methods for the varia-
tional problem. In the remainder of this section we shall
briefly discuss this problem. In a sequel paper we shall
elaborate on the subject and report on numerical simula-
tions. To simplify the presentation, and since the prob-
lem of phase reconstruction is commonly considered for
homogeneous media in the paraxial limit, we shall con-
centrate now on the quadratic Monge variational problem
(Mpq). Similar methods and considerations also apply
to problems (Mp) and (M).

The first thing to notice is that our derivation in Sec-
tion 2 was formulated for intensity functions defined over
the entire plane. The theory is valid, of course, also for
the special case where I1 and I2 are supported on finite
domains, say, D1 and D2 , respectively. The question is
how to define these domains in the optical situation that
is of interest here. A natural option is to choose the ap-
erture’s image. It is not obvious, however, how to define
this image. One way of doing it is to select an initial in-
tensity threshold and use it to determine the location of
the image boundary. In addition, we have to handle the
question of how to deal numerically with cases in which I
vanishes or nearly vanishes at the boundary.

A small number of numerical algorithms have been
proposed for the Monge mass transportation problem.
We shall briefly describe here two such methods. The
first method converts the Monge problem into a linear
programming problem. This is done by associating prob-
lem (Mp) [or (M)] with the Kantorovich minimization
problem (K).

Kantorovich7 considered the problem of minimizing the
functional

K~m ! 5 E ux 2 yu2m~x, y !dxdy. (56)

The minimization is over all densities m such that their
marginal density is given by I1 and I2 , respectively, i.e.,

E m~x, y !dx 5 I2~ y !, E m~x, y !dy 5 I1~x !.

(57)

Recall that both x and y denote points in the plane. It is
known7 that the problem of minimizing K under Eqs. (57)
has a unique solution. Moreover, the minimizer m is
supported exactly on the graph of the optimal mapping T̄
defined above, namely, m̄(x, y) 5 d@x 2 T̄(x)#, where m̄
is the optimal Kantorovich density. The Kantorovich
problem provides a key tool in the theoretical analysis of
the Monge problem. We use it here as a potential nu-
merical tool.

To solve the Kantorovich problem, we need to discretize
the densities I1 , I2 . That is, we approximate the inten-
sities I1 , I2 with discrete distributions:
I1 ' (
1

N

mi
~1 !dxi

; I2 ' (
1

N

mi
~2 !dyi

, (58)

where $dxi
, dyj

% are unit point masses and ( mi
(1)

5 ( mi
(2) 5 1. The corresponding Kantorovich problems

(57) takes the form

min
M

(
i51

N

(
j51

N

Mi, juxi 2 yju2, (59)

where the minimum is taken on all nonnegative, N 3 N
matrices M, which satisfy ( iMi, j 5 mj

(2) , ( jMi, j

5 mi
(1) .

It turns out, however, that the naive discretizations
[(58) and (59)] leads to a minimizer that is not supported
on a graph. Therefore, instead of expressions (58), we se-
lect the points $xi%, $ yi% according to empirical distribu-
tions, namely,

I1 '
1

N (
i

N

dxi
, I2 '

1

N (
i

N

dyi
. (60)

We then consider the minimization problem (59) subject
to the condition ( iMi, j 5 ( jMj,i 5 1/N. For this formu-
lation there exists a unique minimizer that is a permuta-
tion matrix Mi, j 5 (1/N)d i, j(i) . This permutation de-
fines a discrete mapping

P: $1,...N% → $1,...N%,

which is the solution of the discrete optimal mapping via

T~xi! 5 yP~i ! .

This algorithm requires a selection of points [expres-
sions (60)] that carry identical mass with respect to the
intensities I1 and I2 . This can be done in a variety of
ways. For instance, Ref. 13 proposes a simple suitable
sampling method for the case in which D1 and D2 are
rectangles.

The main drawback of the linear programming formu-
lation, based on the Kantorovich problem, is that it re-
quires us to work with functions of four variables. This
implies a need for large computer memory. We therefore
consider an alternative numerical approach based on a
continuous flow. The idea is that we need not use a flow
that is faithful to the optical equations (8) and (9). It is
only required that the flow will start from I1 and will end
in I2 . A natural candidate for such a flow is the steepest-
descent method. Here we proceed along the gradient of
the Monge problem while always preserving the con-
straint that the mapping transports I1 into I2 .

A steepest-descent flow for the problem (Mpq) was
computed by Angenent et al.13 To emphasize that this
flow of transformations is not directly related to the opti-
cal problem (only the terminal point of the flow, i.e., the
optimal mapping T̄ is), we introduce the flow as

U 5 U~x, t ! : R2 3 @0, `! → R2

and the variable t to denote time for the flow. The flow
starts with an initial mapping U0(x) 5 U(x, 0) that
transports I1 to I2 . For example, the sampling, [expres-
sions (60)] with trivial permutation can be used to gener-
ate an initial mapping.
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In the algorithm of Angenent et al., one decomposes U
at each time t into the orthogonal sum of a gradient and a
divergence-free vector field:

U~x, t ! 5 ¹p~x, t ! 1 v~x, t !, ¹ • v 5 0. (61)

When dealing with bounded domains, we must supple-
ment the requirement that v is divergence free with the
boundary behavior of v. The natural boundary condition
is that the vector field v has no normal component at the
boundary. Together, the requirements on v imply that p
must solve the following Poisson–Neumann problem:

Dp 5 ¹ • U, x P D1 ,
]p

]n
5 U • n, x P ]D1 ,

(62)

where n is the outward normal to D1 . Equivalently, the
potential p can be characterized as the function that mini-
mizes the functional

F~ p ! 5 E uU 2 ¹pu2dx. (63)

The evolution of U is driven by

]U

]t
1

1

I1
v • ¹U 5 0. (64)

We refer to the evolution problems (61), (62), and (64) as
the Angenent–Haker–Tannenbaum (AHT) flow.

The energy * uU(x) 2 xu2dx monotonically decreases
along the AHT flow. If no singularities develop, the flow
is expected to converge to the unique minimizer T̄ of the
Monge problem. The discretization of the flow (64) and
the projections (62) must be done with great care. Recall
that the AHT flow reduces the energy, but it is con-
strained to lie in the manifold of maps U that transport I1
to I2 . If we are not careful in designing our numerical
scheme, the constraint will not be exactly enforced, and
then the flow will carry the mapping into the identity
mapping, which corresponds to zero energy. Therefore
we must use a numerical scheme that maintains the con-
straint also on the discrete level. We found that this can
be achieved by treating the gradient and divergence op-
erators as conjugate operators; numerically, we write a
forward-difference scheme for the gradient and a
backward-difference scheme for the divergence.

It is interesting to note the similarity between the AHT
flow and the associated projection (61) and the Chorin
projection method in fluid mechanics. Chorin14 pointed
out that the Navier–Stokes equations for incompressible
fluids contain no equation for the pressure. Rather, the
pressure is determined from the constraint that the flow
must be incompressible. He thus devised a numerical
approach in which one advances the fluid velocity numeri-
cally while imposing the constraint at each time iteration
through a projection such as Eq. (61).

The AHT evolution equation could be problematic when
I1 is small. As we pointed out earlier, this might indeed
happen in realistic optical situations. One possibility to
overcome this difficulty is to replace the AHT flow with an
alternative gradient flow. In the new formulation we
propose, we replace the projection (61) with the orthogo-
nal projection

U~x, t ! 5 ¹q~x, t ! 1 w~x, t !, ¹ • ~I1w ! 5 0.
(65)

We then replace the gradient flow (64) with the flow

]U

]t
1 w • ¹U 5 0. (66)

It can be shown that with the AHT flow the energy de-
creases according to

d

dt
M~I1 , I2! 5 2E uvu2dx (67)

while along the flow (66) the energy satisfies

d

dt
M~I1 , I2! 5 2E I1uwu2dx. (68)

Indeed, along the flow (66), points where I1 is small will
not contribute much to the decrease of the energy toward
its minimal value; these areas, however, are not signifi-
cant, since they carry little energy.
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