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INTRODUCTION

Let R be a ring with identity element 1 and G a finite group. RG
denotes the group ring. Chouinard [C] showed that an RG-module M is
weakly projective (projective) iff it is RH weakly projective (projective) for
every elementary abelian subgroup H of G (see the definition of weak
projective in Section 1). His proof is based on Serre’s theorem on products
of Bockstein operators. Chouinard’s theorem can be generalized (using his
original result) to arbitrary crossed products R * G. Recall that a crossed
product R * G is an associative ring which contains R and has an R basis
{u,}, < - The multiplicative structure is given by the rules:

(1) (“Twisting”) u,u, = a(o, 7)u,,,where a: G X G — U(R) (units

of R).
(2) (“Action”) u,x =t (x)u, where ¢, € Aut(R).

(See also [P, Chap. 1, Sect. 1].)

One of the main points of this generalization is that results on group
actions on rings R may be obtained from the structure of R as a module
over the skew group ring R,G.

For a given action of G on R (i.e., a homomorphism 7: G — Aut(R)) we
construct the trace map for H < G

a7

tr,: R > R”  (H-invariants)

r— Y o(r).

o€H
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It is easy to show (Section 2) that if tr,; is surjective onto R then tr;, is
surjective onto R for every subgroup H of G. In this paper we prove

THEOREM 1. Let R and G be as above. If try, is surjective onto R for
every elementary abelian subgroup H of G, then tr is surjective onto R°.

Let us point out that in case that R is a commutative ring, tr; is
surjective onto R iff tr, is surjective onto R” for every prime order
subgroup P of G (see [A, Corollary 02]). This stronger result is known to
fail for arbitrary non-commutative rings. Theorem 1 is a consequence of
our main result.

THEOREM 2. Let R * G be a crossed product of G over R and let M be an
R * G-module. Then M is weakly projective ( projective) iff M is R = H weakly
projective ( projective) for every elementary abelian subgroup H of G.

To see that it implies Theorem 1 above, let R* G = R,G be the skew
group algebra of G over R defined by the given action ¢: G — Aut(R)
(trivial twisting) and note that R, as a principal R,G module, is projective
iff the trace map tr,; is surjective onto R (see [ARS, Proposition 1.7] or
Section 2 below). From Theorem 2 we conclude also

THEOREM 3. Let R+ G be a crossed product algebra and M a left R + G
module. Then

proj.dimy, ;M = sup {proj.dimg, ;M)
H<G
elementary
abelian

and so
gl.dimR+G = sup {gl.dimR=*H}.
H<G

elementary
abelian

This generalizes a theorem of Yi [Y, Corollary 5.4].

1. WEAK PROJECTIVE MODULES OVER
CROSSED PRODUCTS

DEFINITION. A module M over R * G is said to be weakly projective if
for every diagram of R * G modules (and R * G morphisms)

M
iz

A7B—>0
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in which ¢ may be lifted to an R-map, it may be lifted also to an R * G
map.

For a left R * G-module M, a diagonal action of G on Hom (M, M) is
defined (o (f) = u, fu;', u, € R+ G) and hence we have the (trace) map

trg: Homg(M, M) —» Homg, (M, M)
fo X ugfug

oeG

LEMMA 4. Let M be an R * G module. Then M is R = G weakly projective
iff there exists an f € Hom (M, M) with tr;(f) = 1,,.

Proof. Construct the (left) R * G module ZG ® , M with the diagonal
action

xu(oc®m) =10 xu.m, meM,r,0€ G, x €R.

Consider the surjective R * G map
n:2G ®,M > M
o®m—>m.

Clearly, n splits as an R map (say, by m — e ® m, e the identity element
in G). Suppose M is R * G weakly projective, so n splits also as an R =G
map, i.e., there is an R* G map : M — ZG ®, M such that n° ¢ = id,,.
Since G is a Z-basis, y(m) = L . ;0 ® f,(m) where f,: M > M, o0 € G
are uniquely defined. Furthermore, for every x € R

Y o®f (xm)= ) o®xf,(m) (i is R-linear)

PETe, oeG
and so f, € Homz(M, M) for every o € G. Since is R * G linear
wb(m) = b(um),  T€G
Y roou.f,(m)= Y oof,(um).

oeG ceCG
Comparing base elements, we obtain
re ® u.f(m) = 7®f.(u,m)
or

u f.(m) = f.(u,m),
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and denoting u_m = m’' we get

u,fuz! (ml) = f.(m)
for every 7 € G and m’ € M. Since ¢ splits 7,

m= ¥ fm) = L ufous'm).

7€ G 7€eG

Hence f, € Homgz(M, M) satisfies tr;(f,) = 1,,.
Conversely, let f € Hom z(M, M) with tr;(f) = 1,, and let

M
iz
A—>B—0

be a diagram of R * G modules and R * G maps. Suppose that w can be
lifted to an R-map s: M — A, i.e., € o s = u. Define the R * G map
§: M — A
me— Y u.sofu”'(m).

T€eG

Clearly, 5 is an R = G map. Furthermore, & ° 5(m) = eX__su, s fu; '(m)
= ul(m), so § is a lifting of w, and M is weakly projective. |

We apply this to obtain Chouinard’s theorem for crossed products.

Proof of Theorem 2. By Lemma 4, for every elementary abelian sub-
group H of G there exists ) € Hom (M, M) with

trH(f(H)) = Z ugf(H)u(;l =1y.

oc€H
Every ) induces a map
f:Homg(M, M) — Homz(M, M)
g~ f"g.

We claim that tr,(f{7) = Iy,n v ) Indeed, acting on g €
Hom (M, M)

try (f¥0)(g) = X o (fi07'(8))

oc€H
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and evaluating at m € M

tr (F)(g) (m) = ZHa(fka)U’l(g))(m)
= X u,(f¥07'(8))(u; 'm)
oc€H
= EHu”(f‘mu;lg(ugu;lm)) =g(m).

Thus, Hom (M, M) is Z H weakly projective for every elementary abelian
subgroup H of G. By Chouinard’s theorem [C, Theorem 1], it follows that
Hom (M, M) is ZG weakly projective and hence_ H"(G,Homz(M, M)) =
0 (the n™ Tate cohomology). The vanishing of H°(G,Hom z(M, M)) says
that the map tr;: Hom z(M, M) — Hom (M, M)® is surjective. In partic-
ular, there exists f & Homg(M, M) with tr;(f) = 1,,. By Lemma 4 we
conclude that M is R * G weakly projective. Finally, the statement about
projectivity (rather than weak projectivity) follows from the fact that
projectivity of R#* G (R * H) modules is the same as weak projectivity
together with projectivity over R.

COROLLARY 5 (compare with [P, 18.10D. R * G is semisimple artinian iff
R « H is semisimple artinian for every elementary abelian subgroup H of G.

Proof. This is clear.

Proof of Theorem 3. A projective resolution of an R * G module M
remains projective over R=* H, and recall that proj.dim,, ,M <n is
equivalent to R = H projectivity of the n™ syzygy module K, of any
resolution of M. The statement on the global dimension follows at once.

REMARK. The results of this paper hold for G-strongly graded rings
(generalizing crossed products R *G) (see [P, Chap. 1, Sect. 2]). The
proofs are basically the same. Let us write the diagonal action in this case.
Let S be a G-strongly graded ring, that is, § = X, S, (the sum being
direct) such that for every o, 7 € G S, S, = S, (rather than just S, S, C S, .
as required for G-graded rings). Let M, N be left S modules. Then the
action of G on Homg(M, N) (e the identity element in G) is given by

(oh)(m) = X h(ym).

where x; € S, y; € §,-1, and X/, x;y; = 1. One verifies that this action
of G is well defined.
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2. INDUCTION ON TRACE MAPS

We consider now a special case of crossed products—the skew group
ring R,G. R is an R,G module (in particular a G-module) so the trace
map

tr;: R > RC

x— Y o(x)

oeG

is defined.

It is obvious that tr;: R — R is surjective if and only if 1, is in the
image of this map, and so surjectivity of tr;: R — R implies surjectivity of
tr,;: R > R, H any subgroup of G, for if g,,..., g, are representatives of
(left) cosets of G:H and x € R is such that tr;(x) = 1, then the element
y = Xi_,g/x) satisfies tr;y = 1;. Since Homz(R, R) = R as G-modules,
Lemma 4 implies that R is an R,G projective module if and only if there
exists an element x € R with tr;(x) = 1;. Together with Theorem 2 we
obtain again Theorem 1.

It might be interesting to obtain a formula for x,; with trg(xg) = 1,
depending on all y, with tr,(y,) = 1z for every H < G elementary
abelian. The existence of such a formula was proved by S. Shelah.

PROPOSITION 6 (S. Shelah). An expression for x, of the required form,
does exist. Moreover, fixing the finite group G, the formula does not depend
on the ring R. Such a formula for x; has the form

Sj)

n
) al‘fil( YHH) ‘Tiz(YH.\.z) O'ij(,-)(YH_ ),
i=1

where s = s(i), a; € Z, 0; € G, H, < G elementary abelian, y, € R with
try(yy) = L.

Proof. Let K be the variety (i.e., defined by a set of equations)

{(R,QDWYH)aeG: ¢:G > Aut(R), yy €R, try(yy) =1}

H < G elementary abelian
and let

FG = (RF, (PgayH)(reG

H < G elementary abelian
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be the free algebra in K; (i.e., it is generated by {0, 1,..., yy,...}y . and
by the operations {+, —, X , ¢}, - ;). By Theorem 1, there exists x; € RF
with
Y e, (xg) = 1. (*)
el
By algebraic manipulations x is equal to some term as described above.
Finally, by the freeness, (*) holds for every (R, ¢, y,) € K; as required.

If R is commutative, an explicit formula for x is given in [A, Theorem
2.1] depending on all y,, P < G (cyclic) of prime order. Here we show how
to compute x; in the special case that R is an algebra over [, and G is an
abelian 2-group (or has such 2-Sylow subgroup).

First, let G be a cyclic group of order 2/, [ > 1 generated by o, and
H = {1, 5% '} be its unique elementary abelian subgroup.

CLAM. If x € R satisfies tr,;(x) = x + o(x)* ' = 1, then y = xo(x)
satisfies trs(y) = 1.
Proof.
2!—1

Y o'(xo(x))

i=0

trg(xo (%))

20=1-1
= o[xo(x) + 0¥ '(xa(x))]

i=

f=}

217 ot : -1 -1
- ol[xo(x) + o (x) a2 1 (x)]

Il
o

20-1-1

_ oilxo(x) + (1 -x)(1 - o(x))]

i

I
o

Y o[l —x—oa(x)] = —x— 0¥ '(x) =14

20711

(=1

1
as desired.

Next, let G = (o) ® (0,) & - ® {g,) be an abelian 2-group. By
induction it is enough to compute x; with tr;(x;) =1 in case that
G=(o)®N, Koyl=2""", H=(o?) ® N, and x, € R such that
try(xy) = 1. Indeed, let z = try(xy). Then tr ,(z) =1 and by the
cyclic case, tr,, (zo(2)) = 1. Now, z and therefore zo(z) are N invariant,
so there exists y € R with try(y) = zo(z). Consequently tr;(y) = 1.
Following the steps above we have

y = try(xg) o (try (X)) )tr o (xy).
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