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Suppose r is a group and a homomorphism t : I’-+ Aut(K) is given. Here K is a 

field and Aut(K) is the group of field automorphisms of K. Then we say that r acts 

on K. In such circumstances the multiplicative group K* is a r-module and it is well 

known that elements of H2(r, K*) give rise to ‘crossed product’ algebras. To recall 

this let aeN2(r, K*) and let f: TxT-+K* be a 2-cocycle representing a. One 

defines the crossed product, which we denote by 

as follows. As left K vector space it is a direct sum UaErKuo. Multiplication is 

defined so as to satisfy the rule 

Here a(~) is the action of t(a) on y. It is easy to see that this multiplication is 

associative (this follows from the cocycle condition) and that, up to isomorphism 

of rings, KfT only depends on (Y, not on the choice of f. It is thus assumed 

sometimes, for convenience, that f is a ‘normalized’ cocycle, i.e., f( 1, a) =f(r, 1) = 1 

for a, r~r. Then the unit element of Kpf’ is ul. 

Examples. (1) If r is finite and acts faithfully, then KpT is the old crossed product. 
It is a central simple algebra with center the fixed field Kr. 

(2) If t and a are both trivial, we get the ordinary group ring KT. 
(3) This is a more complicated (and interesting) example. Let 

a: l-+A-+r+G-+l 

be a group extension with A torsion free and abelian. We also identify a as an ele- 

ment in H2(G, A). Let I be a field. It is known that the non-zero elements of IA do 

not divide zero in IT and that one can ‘classically’ localize Zr with respect to the set 

S = IA - (0)) i.e., form the ring of fractions S-‘Zr, see [7] for proof of this. Now, 

S-‘IA is equal to f(A), the field of fractions of IA. We denote it by K. G acts on 
K via its action on A which, in K*, can be thought of as the set of monomials. The 
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inclugion map i :A~K* induces i.(a)~ H2(G, K*). Dropping the i .  from the nota- 
tion we can form K~G. It is easy to check explicitly that 

S-llF=K~G. 

This example shows that the construct K~F exists in nature. 
In order to make the notation K~F more flexible and convenient we drop from 

it trivial things. Thus KtF stands for K~F with u = 0 and KaF for the case where 
F acts trivially. 

If F '  is a subgroup of F, let t ' =  t/F' and a ' =  resrr,(u). Clearly the crossed pro- 
duct K~,'F' can be identified as a subring of K~F. This is used below repeatedly. 

In this paper we are concerned with global dimensions of crossed products. In 
example (1) above KftF is a simple artinian ring so its global dimension is 0. In ex- 
ample (2) gl.dim(KF) is also known as the cohomological dimension of F over K, 
denoted cdr(F) ,  and depends only on char(K), see [8, p. 89]. Here we prove a 
general inequality (3.2 below) and deduce that always 

(.) gl.dim(K~F) _< gl.dim(Kt F )  _< cdK(F). 

We also prove some other results, to be described in a moment. The basic idea 
underlying all our results is the construction of a spectral sequence. Let F0 be a 
normal subgroup of F, F/Fo = G, L the fixed field K r°. As in galois theory G acts 
on L with associated map t :  G ~Aut(L),  i.e., 7(t~)(x) = a(x) for x~L.  Let R =K~F 
and R0 =K~0°F0 (to, a0 are the restrictions to F0 of t, a). R0 is a subring of R. If 
M, N are left R-modules then HomR0(M, N) has a natural LTG module structure, 
i.e., u has disappeared! Let k be the fixed field K r. The group ring kG is a subring 
of LrG and in Section 1 we show that there are natural isomorphisms 

HomR(M, N) = HOmka (k, HomR0(M, N)) = HomL76 (U, HOmR0(M, N)) 

where U= LTG ®k6 k (k is the trivial kG-module.) Thus HomR(- ,  - )  is expressed 
as a composition of two 'simpler' functors and, using ax, eraging operators, in Sec- 
tion 2 we show that if M is a projective R module, then HomR0(M, N) is 'acyclic' 
in the sense that Ext~G(k, - )  vanishes on it for p > 0. Thus the conditions of a 
theorem of Grothendieck are satisfied and we obtain a convergent spectral sequence 

EP'q= ExtPc (k, Extq0(M, N)) = ExtP + q(M, N). 

In Section 3 we note this and derive the main consequences, which are the in- 
equalities ( . ) .  It is easy to give examples of strict inequalities in (,) where the larger 
number is oo; but we thought at one time that if cdK(F)< oo, then both inequalities 
become equalities and even proved one of them (see Section 4); but gl .dim(K~F)< 
c d r F <  co can happen, as shown in a letter from K.A. Brown to one of us. 

Finally in Section 5 we show that gl.dim(KT) = 0 implies that F is a torsion group, 
but it can be infinite: we give a construction in which Kf~F is a division ring and 
F is a (locally finite) infinite group. 

We wish to acknowledge a constructive referee report whose suggestions made the 
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presentation of this paper more unified and less repetitious. We are also grateful to 
K.A. Brown for the information mentioned above. 

1. Module structures 

We retain the notation of the introduction, so that F o <~ F, G = F / F  o, L = K r° etc. 
When working with group rings it is well known that Homro(- ,  - )  transforms F-  
modules to G-modules. Here the situation is similar but slightly more complicated. 
The nice thing is that Homn0(- ,  - )  is a functor to LrG modules regardless of  a. 

If tre F, its residue class in G is denoted by #. Let M, N be left R-modules. 

1.1. Lemma. Homn0(M, N)  is an LgG-module where i f  h ~ Homno(M, N),  tr ~ F 

and x ~ L ,  then x u ,  acts on h by the rule xu , (h (u~ lm) )  f o r  m e M .  

Proof. It is clear that multiplying elements of Homn0(M, N) by elements of L is 
permissible. It remains to check (1) that this action is well defined, (2) that 

ueh ~ Homn0(M, N) and (3) that it is an action, i.e., that 

xuo(yu~h ) = xtr(y)(ua~h ) where x, y ~ L; tr, r ~ F. 

To prove (1) let Q = all where a e F0. Since h is R0 linear, 

uauuhu~l  ha 1 = uahu~  I. 

But 
u e hu~ 1 =f(tr, lg)- i ua uu hu ;  1 u~ l f(tr, U) = ua hu~ 1, 

since u u cancels as does f(tr,/~) when it is pulled out (here we see this phenomenon 

for the first time). 
It is immediate that uah is K-linear. Now suppose/~ ~ F0. To prove (2) we have 

to show u~h(uum))= uu(uoh(m)) for m ~M.  The computation is similar to that in 

(1) and can be dropped. 
To prove the identity in (3) we evaluate both its sides at m e M. The left hand side 

gives 
xu  a ( yu  r h(u~ 1 u g i m) ) = xa(  y)u a u~ hu~ i u (  r i (m) 

= xa(y ){ f ( t r ,  r)u~rhu~lrf(tr, r) - l  }(m). 

Pulling out f(tr, r) -1 it comes out unchanged (suffering 2 attacks along its way, 
which cancel each other.) Thus we can write 

= Xtr(y)uarhu~rlr (m) 

= xtr(y)uer h(m).  

This completes the proof. 
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In fact it is clear that HOmRo defines 2 functors from the category of left R 
modules to the category of left L?G-modules: one contravariant M-HomRo(M, N), 
the other covariant N~  HomR0(M, N). Obviously these are (finitely) additive left 
exact functors. Since the derived functors of, say, M ~ HomR0(M, N) are the func- 
tors Ext~0(M, N) we get 

1.2. Lemma (in the notation of 1.1). EXt~o(M, N) has a natural L?G-module struc- 
ture such that connecting homomorphisms are L?G-linear maps. 

From now on we shall denote the functor M,-, HomR0(M, N) by #N(M). 
Let k =K r ( =L c) be the fixed field. The group ring kG is a subring of L?G. Let 

U= LTG ®kO k (here k denotes the trivial kG-module). In what follows we some- 
times treat L?G-modules as kG-modules, i.e., we only remember their kG- 
structure. This should be clear from the context. 

1.3. Lemma. Let M, N be R-modules. There are natural isomorphisms o f  functors 

HomR(M, N) = HOmLrG (U, HomRo (M, N)) = HomkG (k, HomR0(M, N)). 

Proof. We only prove the first isomorphism; the proof of the second is similar. If 
h ~ HOmL~G(U, HomR0(M, N)) we want to map it to h(1 v) where 1 u = 1 ® 1 ~ U. So 
we have to show that h(lv)eHomR(M,N).  Let o e F ,  m e M .  Then 

h(1 v)(u g 1 m) = u g I ( U ° h( l v)(u$ I m) ) 

= ug I ((uoh (1 v))(m)) 

=u~l(h(6 • Iu)(m))=u~l(h(lv)(m)). 

Thus h(1 v) is in HomR(M, N). It is easy to check that the map h ~ h(1 v) is natural. 
To define the inverse transformation let g~HomR(M,N) .  An element of 
Homtr6(U, HomRo(M,N)) is characterised by its value at 1u, which must be G- 
invariant; conversely such a G invariant element gives rise to an element of 
HOmL~c(U, HomR0(M, N)). Since g is R linear it is G invariant when considered in 
HomR0(M, N) so we can define g by g(lv)(m)=g(m) for m ~M. It is easily check- 
ed that this defines a natural transformation inverse to the above. 

We shall need the following application of the second isomorphism of 1.3. 

1.4. Lemma. There is a natural isomorphism o f  J-functors on LTG-modules 

Ext~,o (k, - )= Ext~Tc (U, - ). 

This follows, of course, from the exactness of the forgetful functor mentioned 
before Lemma 1.3. 
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2. Acyclicity 

We shall denote the functor Homko (k, - )  by ~. Thus if P is a kG-module, ~(P)  
is simply pC. The derived functors of  ~ are the Ext~c(k, - ) .  If k is Z, these are the 
cohomology groups H" (G, - ) .  Since we work only over k we will abuse the notation 
and denote Ex t~o(k , - )  by H ' ( G , - ) .  These functors are very much like the 
ordinary cohomology groups. For example they satisfy a 'Shapiro lemma'  over k, 
of which we shall need a special case. 

Call a kG-module co-induced if  it is of the form Homk(kG, V) for some k- 
module (i.e., trivial kG-module) V; here G acts 'diagonally' ,  see [1]. Shapiro's 
lemma in this case is 

2.1. Lemma. I f  P is a direct summand o f  a co-induced kG module, then it is 
cohomologically trivial, i.e., n q ( G ,  P )  = 0 for  q> O. 

The proof is the same as in group cohomology. Recall that ~ ( M ) =  

Home0(M, N). 

2.2. Proposition. I f  M is projective over R, then qbN(M ) is ~P acyclic, i.e., it is 
cohomologically trivial. 

Proof. By finite additivity it suffices to prove the result for M free. So suppose 
M = R  x, a free module of ' rank'  III. Then ~lv(M) is a product of III copies of 
HomR0(R, N). As ~ and its derived functors commute with products, it is enough 
to prove that HomRo(R, N) is ~ acyclic. By 2.1, this will follow from 

2.3. Proposition. HOmR0(R, N) is a direct summand o f  a co-induced kG-module. 

To prove this we shall employ the concept of mean value operators. 

2.4. Definition. A kG-module P admits a mean if there exists an additive function 
('integral') I :  Map(G,P)-~P satisfying (i) if c: G - ' P  is a constant function with 
value a e P, then [(c)= a; (ii) it is G-linear. 

Here G acts on Map(G, P)  diagonally, i.e., if h:  G ~ P  then, ah ( r )=  a(h(a-lr)). 

2.5. Lemma. I f  P admits a mean, then it is a direct summand o f  a co-induced 
module. 

Proof. There is always a kG-linear imbedding of P in Homk(kG, P)  as the set of 
'constant functions' viz. to x e P  corresponds the constant function with value x. 
Identifying Map(G, P)  and Homk(kG, P)  in the obvious way, f defines a map from 
Homk(kG, P) to P. This map is kG-linear by 2.4(ii) and is a left inverse to the 
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above imbedding by 2.4(i). 
Thus to establish 2.2, it remains to show 

2.6. Lemma. HomR0(R, N) admits a mean. 

Proof. Let h : G  ~HomR0(R, N). We define f(h)to be the additive function satis- 
fying [(h)(xua)=xh(~)(u~) for a e F ,  x e K .  We have to check (1) f(h) is R0 linear, 
and (2) (i) and (ii) of 2.4. 

Proof  of(I) .  Let y e L, r e F0. We are to show that [(h)(yurxua)=yur(f(h)(xua)). 
Now f(h)(yu,xu~)= [(h)(yr(x)f(r, a)u~.)= yr(x)f(r, cr)h(d)(ura) since zcr = ~. On the 
other hand, yur([(h)(xua))=yr(x)urh(~)(ua)=yr(x)h(d)(f(z, cr)ur~) which is as 
desired. 

Proof  o f  (2). Obviously (i) of 2.4 holds. To prove f(Oh)= O[(h), we must check, 
for x e K, r E F, that [(#h)(xu r) = (d/(h))(xu 0. This is a confusing verification and 
we do it in some detail. Recall that G acts on HomR0(R, N) by do = uaou~ ~ (com- 
position of maps) and on Map(G, HomR0(R, N)) similarly by (dh)(f)= O(h(a-lr)). 
Thus, given h : G~HOmR0(R,N), x e K  and r e F  

oRh)(xuO = uj(h)(u  xuO) 
= xua([(h)(f(cz -l, 0")- l f ( o  "-1 , T)Uo.-,z) ) 

.= xuof(tr -1, tr)- lf(tr -1 , z)h(tr -1 r)(ua-, r). 

computation the normalization of f mentioned in the intro- We have used in this 
ductiOn. 

~¢~h) (xu r )  = x ( ~ h ) ( T ) ( u r )  -- x ( a h ( o  .-1 T))(Ur) -- Xua(h(cT-IT)(u~lur)) 

= XUcr(h(o "-1 z ) ( f ( o  "-1, o') -1 • f ( a  -1, ~ ')ua-,r)  

= x u j ( a  -l, a) -  lf(a "1, r)h(a- l 0(u -,0 

and the proof of (ii) is complete. 

3. The main results 

In 1.3 we saw that HomR(M, N ) =  ~u. ~N(M) and in Section 2 it is shown that 
¢~N (which is a left exact contravariant functor) takes R-projectives to ~'-acyclics. 
By a theorem of Grothendieck, [2, Theorem 2.4.1], there is a convergent E2 spec- 
tral sequence with E~'q=RP~P • Rqq~N(M) and limit Rn(~P • ~N)(M). Substituting 
R P ~ = H P ( G , - )  etc. we get 

3.1. Theorem. There is a convergent E2 spectral sequence 

HP(G, Extqo(M, N)) = Ext,(M, N) where M, N are R-modules. 
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An immediate corollary of 3.1 and 1.4 is 

3.2. Theorem. gl.dim(KtaF) < gl.dim(Kg°Fo) + gl.dim(LrG). 

Proof. Say gl.dim(K~o°Fo)=r, gl.dim(LTG)=s. If  p+q=n>r+s,  then either p>r 
or q>s. In both cases E~'q=o so EP'q=o and therefore Ext,~(M, N).  

3.3. Corollary. gl.dim(K~F) <_gl.dim(KtF ). 

Proof. Take F 0-- 1 in 3.2. 

3.4. Proposition. gl.dim(KtF) < gl.dim(kF) = cdK(F). 

Proof. Again we take F0= 1. In the spectral sequence Ext~0(M,N)=0 for q>O, 
since R0 is a field. Thus the spectral sequence collapses to isomorphisms 
HP(G, Homx(M, N)) = ExtnP(M, N) .  Clearly our proposition follows. 

The moral is, obviously, that more ( 'heavier') structure lowers the global dimen- 
sion (by 'gravitation').  It is indeed easy to give examples showing that imposing 
structure can make infinite-dimensional objects into finite-dimensional ones. It 

requires more effort to give examples of strict inequalities with both sides finite. 

3.5. Examples. Let F =  C × G where C is a finite p-group, which for simplicity we 
can take to be cyclic, and G a group of finite cohomological dimension n. Suppose 
F acts on a field K of characteristic p via its factor C, i.e., G acts trivially. Then 
it is easy to see that cdK(F) = oo while gl.dim(KtF) = n. An example with trivial ac- 
tion can be obtained as follows. Let T be an infinite cyclic group, q~: T--,C a surjec- 
tion and T' = ker(tp). Let k be a field of characteristic p and K =  k(T'), the field of  
fractions of kT'. If  S=kT'-{O},  then we see that S-lk[T×G]=KaF where a 
comes from the extension 1--* T ' -*  T - ~  ~ C ~  1. Thus KC'F has global dimension n 
while cdK(F ) = oo. 

4. Monotonicity 

Let F '  be a subgroup of F, t ' =  t IF ' ,  a ' =  resrr,(~). We denote K ca'F' by R'. 

4.1. Proposition. gl.dim(R') <gl.dim(R). 

Proof. Let T= { 1 } (3 T' be a right transversal (for the cosets F'y). The sets F '  and 
U~r,F'r are stable under the action of  F '  on both sides. Thus if we write R =  
R'IR + ~ r' R'ur, the sum on the right is a bimodule over R'.  Hence if N is an R'-  
module, it is a direct summand of R ®n'  N. Clearly projective R modules are pro- 
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jective over R'.  So pdR,(N) -< pdR(R ®R' N) _< gl.dim(R). 

4.2. Corollary. I f  ker(t) has finite index in F and F'= ker(t), then gl.dim(R') = 
gl.dim(R). 

Proof. In (3.2) take Fo=F '. Then L = K  and gl.dim(KTG)=O. 

We now investigate what happens upon 'change of field'. Suppose F is a field 
containing K and F acts on F in a way that extends its action on K. We denote both 
actions by t. We already have ct e H2(F, K*) and the inclusion j : K * ~ F *  induces 
j . (a)  and again we will abuse notation and write a for j , (a) .  (This is a true abuse 
since quite often j .  is not injective.) 

4.4. Proposition. I f  gl.dim(KtaF) < oo, then gl.dim(KtaF) < gl.dim(FTF). 

We denote K~F= R and F~F= 1~. 

Proof. Let A =R .  1~, and C = R / A .  As a left R-module C is free. Indeed using a 
basis of F over K which includes 1, it is easy to see that the residue classes in C of 
the non 1 elements in this basis are a basis for C over R. Thus the canonical surjec- 
t ion/~-- ,C splits (over R). Let ~ p : C ~  be such a splitting; then R = A  + (p(C), a 
direct sum. The result now follows from 

4.5. Lemma. Let  R C R  be rings such that R = R .  I,~+B, the sum being a direct 
sum o f  projective left R-modules. I f  gl.dim(R)< o0, it is also <gl.dim(R). 

Proof, Suppose gl.dim(R) = n. Let M be a (finitely generated) R-module such that 
Ext,~(M, N) #: 0 for some N. Note that Ext,(M, - )  is a right exact additive functor. 
Let R Z - , N  be a surjection. Then the induced map Ext~(M,R)I- ,Ext~(M,N)  is 
surjective and we see that Ext~(M,R)~:0. Now as in (1.4), Ext~(R®RM,/~)= 
Ext,(M, R) and this is not 0 since it contains Ext,~(M, R). 

4.6. Corollary. Let k = K r. Then gl.dim(KtF) = gl.dim(KF) (=  Cdk(F)). 

Proof.  (3.4) gives _< and (4.4) gives the opposite inequality. 

Problem. Let F= K ( t l , . . .  , tn) , a field of rational functions, and suppose the action 
of F on K extended to F by its acting trivially on the variables. Is it true, in this 
case, that gl.dim(R)=gl.dim(R)? 
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5. Global dimension 0 

Maschke's theorem says that if G is finite and char(K) does not divide I G [, then 
KG is semisimple, i.e., has zero global dimension. By inequalities (3.3) and (3.4) (see 
also Introduction), if  KG is semisimple, so is K~G. In this section we prove 

5.1. Proposition. If K~F is semisimple (i.e., gl.dim(Kt~F) =0),  then F & a torsion 
group. 

Proof. By the structure theorem a non-zero-divisor in a semisimple ring is invertible. 
Thus the proposition follows from. 

5.2. Lemma. I f  a ~ F & o f  infinite order, then 1 - uo ~ K~F & not invertible and not 
a zero-divisor. 

Proof (of lemma). This is well known in group rings and is proved similarily here. 
Suppose ( 1 - u a ) o = 0 ,  i.e., v=uao and, say, ul appears in o. Then o=uao= 
u~v =-.- and this implies that infinitely many powers of a (i.e. of  u,~) appear in o. 
Thus o = 0 and 1 -  u a does not divide 0. If 1 - u ~  were invertible its inverse would 
have to be the infinite geometric series ~n~=0 u~ which is impossible! This 'proof '  
can be made respectable as follows. Let {ri} be coset representatives in F for the 
cosets Tx where T is the infinite cyclic group generated by a. Then K~F= ~iAur i ,  

a direct sum, where A is the ring generated over K by u a. This shows that 
(1 - ua) -1, where it to exist, would have to be in A. The non-invertibility of 1 - u,  
in A is proved by a degree argument and is left to the reader. 

5.3. Corollary. I f  F is a free group, gl.dim(Kt~F)= 1. 

Proof. gl.dim(KtaF) > 0 by (5.1). On the other hand cd F =  1 (see [8, Proposition 7] 
and the discussion in 1.4 there), so gl.dim(Kt~F)_ < 1. 

5.4. Example. Unlike group rings, K f F  can be semisimple for infinite groups F. In 
fact, K f F  can even be a division ring. To see this let G be an infinite locally finite 
group (e.g. Q /Z ,  GL(0:p)). We construct a group extension 

7( 
a: I ~ A ~ F  ~ G ~ I  

such that F is torsion free and, moreover, the group ring kF over some (in fact any) 
field k is an integral domain. 

As in example (3) of  the introduction one knows, in such circumstances, that 

S- IkF=K~G 
where: 

S = k A - { O } ,  



112 E. Aljadeff, S. Rosset 

K =  field of fractions of kA, 

G acts on K via its action on A, and 

a comes from the inclusion A ~K* .  

To see that K~G is a division ring note that given a finite set in G it is contained 
in a finite subgroup H. If rt-IH=FH, then 

S-] kFH= Kf H (fl=resHCa) 

is a division algebra, being a domain finite dimensional over its center which is a 
field. Since G is locally finite, UHKtaH=K~G is a division ring. It remains to con- 
struct F (more precisely a) having the desired properties. 

Let {/-/j}j~j be a list of all subgroups of  prime order of G. For each j let Aj = 
CoindHCj(Z). Here Z is the trivial ZHj-module and Coind is defined by 

CoindHC(M) = Homzn(ZG, M) (M an/-/-module).  

This is the notation of  [1, Ch. 111-5] and the reader is referred to this book for details 
on the G-structure of Coindn6(M) and the 'Shapiro isomorphism' which we now 
use. It gives an isomorphism 

SG'H H2(Hj, Z)--*H2( G, A j). 

Since Hj is cyclic H2(I-Ij, Z)=Z/IHj[ 7/. Let flj be a generator and aj=s~(flj). 
Finally let A = IljejAj, (pj the inclusion of  Aj in A (in the j - th coordinate) 

a =  I I  (0j,(aj) in H2(G,A). 

To simplify notation we identify uj with (pj,(aj). Thinking of a as a group extension 

a: I ~ A ~ F ~ G ~ I ,  

we claim F is torsion free. This follows from the so called 'Charlap criterion' [6] 
which says that F is torsion free o r e s~a  ~= 0 for all j ~ J. Let us see that aj (more 
precisely q~j.aj) does not restrict to 0 in/-/j.  Now, it is not hard to see that, as Z/-/- 
modules, if M is an H-module, C o i n d ~ ( M ) = M ~ M '  such that, if 19 denotes the 
projection to M then, for every k, the composition 

Hk(H, M) s~ Hk(G ' Coind~(M)) r e s  Hk(H ' Coind~(M)) P*, Hk(H, M) 

is the identity. In our case taking H=/- / j ,  M =  7/, k = 2 we get 

res~(aj)  g= 0, hence r e s ~ ( a ) , 0 .  

This proves F is torsion free. 
To prove kF is a domain (independently of k) note that it suffices to prove that 

kF' is a domain for every finitely generated subgroup F'CF. But F '  is easily seen 
to be 'virtually abelian', i.e., its image in G is finite and its intersection with A finite- 
ly generated. Thus by results of K.A. Brown (for char(k)=0,  see [5, p. 616]) and 
P. Linnell (for char(k):~0, see [4]) kF' is a domain. 
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