# Crossed Products, Cohomology, and Equivariant Projective Representations 

Eli Aljadeff and Shmuel Rosset<br>Tel-Aviv University, Ramat-Aviv 69978, Israel<br>Communicated by Nathan Jacobson

Received December 1, 1986

Let $k$ be a commutative ring and $K$ a commutative $k$ algebra. If $G$ is a group acting on $K$ via a homomorphism $t: G \rightarrow \operatorname{Aut}_{k}(K)$, which may (in general) have a nontrivial kernel, then the multiplicative group $K^{*}$ of invertible elements of $K$ is a $G$ module. The elements of the "galois" cohomology group $H^{2}\left(G, K^{*}\right)$ give rise to the well known Crossed Product Construction (see [1]). It is defined as follows. Let $\alpha \in H^{2}\left(G, K^{*}\right)$ and let $f: G \times G \rightarrow K^{*}$ be a cocycle representing $\alpha$, i.e., $\alpha=[f]$. The crossed product, given $t$ and $\alpha$, is a $k$ algebra, denoted by $K_{t}^{\alpha} G$. As left $K$ module it is $\amalg_{\sigma \in G} K u_{\sigma}$, while the product is defined by the rule

$$
\left(x u_{\sigma}\right)\left(y u_{\tau}\right)=x \sigma(y) f(\sigma, \tau) u_{\sigma \tau} \quad(x, y \in K ; \sigma, \tau \in G)
$$

It is easily verified that this is an associative $k$ algebra, in fact it is even a $K^{G}$ algebra (where $K^{G}$ is the fixed ring), and-up to isomorphism of algebras-does not depend on the choice of representing cocycle.

This construction is well known in the case that $G$ is finite and $t$ is assumed injective. From now on this will be referred to as the "classical" case. Nonclassically, we discussed the global dimension of $K_{i}^{\alpha} G$, assuming $K$ is a field, in our paper [1]. Crossed products are also widely used in operator algebras.

Viewing the Crossed Product Construction (henceforth the CPC) as a map from $H^{2}\left(G, K^{*}\right)$ to a certain set of algebras the question naturally arises: What is the operation on this set of algebras which will make the CPC a morphism between monoids or, even, a homomorphism of groups? Of course one can answer this question in a vacuous "tautological" way. What is being asked is a "natural" operation on some $k$ algebras, like the tensor product over the center in the classical case, which will make the CPC into a Brauer-like, preferrably injective, homomorphism of groups (or, at least, monoids).

The answer to this question is an operation defined by Sweedler [3].

One has to observe that the CPC carries with it more structure than just the $k$ algebra $K_{t}^{\alpha} G$. Also available, given the materials already used (which are $t$ and $\alpha$ ), is a "canonical" $k$ algebra injection of $K$ into $K_{t}^{\alpha} G$. The compound object, which is $K_{t}^{\alpha} G$ and the canonical map $K \rightarrow K_{t}^{\alpha} G$, is called a $K / k$ algebra. In Section 2 we show that the CPC is a homomorphism from $H^{2}\left(G, K^{*}\right)$ to the monoid of all isomorphism classes of $K / k$ algebras (with the Sweedler multiplication) and that, under some hypotheses, it is also injective.

In our attempts to fathom the motive behind the Sweedler operation we found a characterization of it. This characterization says that, in a certain sense Sweedler's definition is the only one possible. This is described in Section 3. The formulation that is thereby obtained in amenable to generalization in the non-commutative direction. If $R$ is a ring and $I$ is a right ideal in $R$ the "idealizer" of $I$ is the subring $\{x \in R: x I \subset I\}$. We denote it by $\operatorname{Id}(I)$. It is the unique maximal subring that contains $I$ as a 2 -sided ideal. Sweedler's construction is describable as follows. Let $A, B$ be $K / k$ algebras. Let $I$ bc the kernel of the canonical projection $A \otimes_{k} B \rightarrow$ $A \otimes_{K} B$ ( $A, B$ taken as left $K$ modules). It is the right ideal of the ring $A \otimes_{k} B$ generated by the set $\{x \otimes 1-1 \otimes x: x \in K\}$. Then the Sweedler product $A \times_{K} B$ equals $\operatorname{Id}(I) / I$. In Section 4 we take a small step towards generalizing Sweedler's construction by showing that if the injectivity assumption on $t: G \rightarrow \mathrm{Aut}_{k}(K)$ is dropped it is still possible, for some $\alpha$ and $\beta$, to find a right ideal $J$ in $K_{t}^{\alpha} G \otimes_{k} K_{t}^{\beta} G$ such that $\operatorname{ld}(J) / J=K_{t}^{\alpha \beta} G$. It seems to us that more work remains to be done in this direction.

Finally in Section 5 we follow a different direction altogether and exhibit an analogue, in the present general context, of the classical descent theory. We define equivariant projective representations of $G$ on $K G$ and show that up to a certain equivalence relation they are classified by $H^{1}\left(G, P\right.$ Aut $\left._{K}(K G)\right)$ where $P$ Aut denotes "automorphisms up to proportionality in $K^{*}$." We then show that a certain subset of this set, which is an $H^{1}$ with coefficients in an abelian subgroup of $P$ Aut $_{K}(K G)$, is naturally a group which is mapped, by a connecting homomorphism, isomorphically onto $H^{2}\left(G, K^{*}\right)$. Finally we show that this subgroup of $H^{1}\left(G, P\right.$ Aut $\left._{K}(K G)\right)$ classifies the "regular" (we also use the adjective "diagonal" below) equivariant projective representations.

## 1. $K / k$ Algebras

As above let $k$ be a commutative ring and $K$ a commutative $k$ algebra. A $K / k$ algebra is a pair $(A, i)$ where $A$ is a $k$-algebra and $i: K \rightarrow A$ is a homomorphism of $k$-algebras (sending $1_{K}$ to $1_{A}$ ). We will usually abuse the
notation and refer to the $K / k$ algebra as $A$, if $i$ is clear. A morphism of $K / k$ algebras $A, B$ is an algebra morphism $A \rightarrow B$ such that the diagram

commutes.
If $G$ acts on $K$ via $t: G \rightarrow \operatorname{Aut}_{k}(K)$ and $\alpha \in H^{2}\left(G, K^{*}\right)$ let $f: G \times G \rightarrow K^{*}$ be a cocycle representing $\alpha$. Let $R$ be the crossed product obtained using $f$. The unit of $R, 1_{R}$, is $f(1,1)^{-1} u_{1}$ and there is an embedding $K G R$ defined by $x \rightarrow x \cdot 1_{R}$. If $R^{\prime}$ is the crossed product obtained using another cocycle $g$ (equivalent of $f$ ) let $\lambda: G \rightarrow K^{*}$ be a 1 cochain such that $f=g \cdot d \lambda$. By definition $R=\amalg_{G} K u_{\sigma}, K u_{\sigma}$ with $u_{\sigma} u_{\tau}=f(\sigma, \tau) u_{\sigma \tau}$ and $R^{\prime}=\amalg_{G} K v_{\sigma}$ with $v_{\sigma} v_{\tau}=g(\sigma, \tau) v_{\sigma \tau}$. The $K$-linear map from $R$ to $R^{\prime}$ defined by $u_{\sigma} \rightarrow \lambda(\sigma) v_{\sigma}$ is an isomorphism of algebras sending $1_{R}$ to $1_{R^{\prime}}$ and, being $K$ linear, commutes with the embeddings of $K$ in $R$ and $R^{\prime}$. Thus we have proved the following.
(1.1) Proposition. Given $t: G \rightarrow \operatorname{Aut}_{k}(K)$ the Crossed Product Construction $(=C P C)$ is a map from $H^{2}\left(G, K^{*}\right)$ to the set of isomorphism classes of $K / k$-algebras.

We denote the $K / k$ algebra obtained from $\alpha$ by $K_{t}^{\alpha} G$. It is often possible to prove stronger results if one assumes that $t$ is injective. For example
(1.2) Lemma. Assume $t$ injective and $K$ a domain. Then (1) the elements of $K_{t}^{\alpha} G$ that commute with $K$ elementwise are precisely the elements of $K$. (2) The elements of $K_{i}^{\alpha} G$ normalizing $K$ are of the form $x u_{\sigma}(x \in K, \sigma \in G)$.

Proof. If $\sum x a_{\sigma} u_{\sigma}=\left(\sum a_{\sigma} u_{\sigma}\right) x$ for every $x \in K$ we must show that $a_{\sigma}=0$ if $\sigma \neq 1$. But $\left(\sum a_{\sigma} u_{\sigma}\right) x=\left(\sum a_{\sigma} \sigma(x)\right) u_{\sigma}$. If $\sigma \neq 1$ let $x$ be such that $\sigma(x) \neq x$. Then the equality $a_{\sigma} x=a_{\sigma} \sigma(x)$ implies $a_{\sigma}=0$. Similarly if $\sum x a_{\sigma} u_{\sigma}=\left(\sum a_{\sigma} u_{\sigma}\right) f(x)$ for some endomorphism $f: K \rightarrow K$ then the equality $\sum a_{\sigma}(x-\sigma f(x)) u_{\sigma}=0$ implies $f(x)=\sigma^{-1}(x)$ for every $\sigma$ such that $a_{\sigma} \neq 0$. This implies that only one $a_{\sigma}$ can be non-zero.

Remark. The assumption that $K$ be a domain can be weakened to "given $\sigma \in G$ there exists an element $x$ such that $x-\sigma(x)$ is not a zero divisor." This technical condition may be useful in analytic contexts where $K$ can be a "large" ring of continuous functions. Such rings are hardly ever domains.

## 2. Multiplication of $K / k$ Algebras

Let $A, B$ be $K / k$ algebras. The $k$ algebra $A \otimes_{k} B$ has a natural maps from $K: x \rightarrow x \otimes 1$ and $x \rightarrow 1 \otimes x$. There is a canonical surjection

$$
\pi: A \otimes_{k} B \rightarrow A \otimes_{K} B
$$

where the tensor product over $K$ is with respect to the left $K$ module structures of $A$ and $B$. $A \otimes_{K} B$ is not an algebra in general. But Sweedler [3] has observed that $A \otimes_{K} B$ has a "canonical" submodule which is an algebra under the naive, coordinatewise, multiplication..

The Sweedler submodule is

$$
A \times_{K} B=\left\{\sum a_{i} \otimes b_{i} \in A \otimes_{K} B: \text { for every } x \in K, \sum a_{i} \otimes b_{i} x=\sum a_{i} x \otimes b_{i}\right\}
$$

The product structure is defined by the rule $\left(\sum_{i} a_{i} \otimes b_{i}\right)\left(\sum_{j} a_{j}^{\prime} \otimes b_{j}^{\prime}\right)=$ $\sum_{i, j} a_{i} a_{j}^{\prime} \otimes b_{i} b_{j}^{\prime}$.
(2.1) Lemma. With the above multiplication and with the map $K \rightarrow$ $A \times_{K} B$ by $x \rightarrow x \otimes 1=1 \otimes x \quad A \times_{K} B$ is a $K / k$ algebra.

The proof is straightforward but demands a genuine understanding of tensor products. (see [3, Proposition (3.1)]). We shall refer to $A \times_{K} B$ as the Sweedler product of $A$ and $B$ (over $K$ ).

We now show that the Sweedler product $\times_{K}$ answers the question raised in the introduction.
(2.2) Theorem. Assume that $t: G \rightarrow \operatorname{Aut}(K / k)$ is injective. If $\alpha, \beta \in$ $H^{2}\left(G, K^{*}\right)$ then $K_{t}^{\alpha} G \times_{K} K_{t}^{\beta} G \approx K_{t}^{\alpha \beta} G$ as $K / k$ algebras.

Proof. We start by identifying the elements of $K_{t}^{\alpha} G \times_{K} K_{t}^{\beta} G$ inside the tensor product $K_{t}^{\alpha} G \otimes_{K} K_{t}^{\beta} G$. Suppose that $K_{t}^{\alpha} G=\amalg K u_{\sigma}$ with $u_{\sigma} u_{\tau}=$ $f(\sigma, \tau) u_{\sigma \tau} \quad$ and $\quad K_{t}^{\beta} G=山 K v_{\sigma} \quad$ with $\quad v_{\sigma} v_{\tau}=g(\sigma, \tau) v_{\sigma t}, \quad f, g \quad$ cocycles representing $\alpha, \beta \in H^{2}\left(G, K^{*}\right)$, respectively. If $\sum_{\sigma, \tau} a_{\sigma, \tau} u_{\sigma} \otimes v_{\tau}\left(a_{\sigma, \tau} \in K\right)$ is to be in $K_{t}^{\alpha} G \times_{K} K_{t}^{\beta} G$ it must satisfy $\sum a_{\sigma, \tau} u_{\sigma} x \otimes v_{\tau}=\sum a_{\sigma, \tau} u_{\sigma} \otimes v_{\tau} x$ for every $x \in K$.

Remembering that $u_{\sigma} x=\sigma(x) u_{\sigma}$ and $v_{\sigma} x=\sigma(x) v_{\sigma}$ for $\sigma \in G$, we see that

$$
\sum a_{\sigma, \tau} u_{\sigma} x \otimes v_{\tau}=\sum a_{\sigma, \tau} \sigma(x) u_{\sigma} \otimes v_{\tau}=\sum a_{\sigma, \tau} u_{\sigma} \otimes \sigma(x) v_{\tau}
$$

(since $\otimes_{K}$ is the tensor product of the two left $K$ structures)

$$
=\sum a_{\sigma, \tau} u_{\sigma} \otimes v_{\tau} \tau^{-1} \sigma(x) .
$$

Thus we have $\sum a_{\sigma, \tau} u_{\sigma} \otimes v_{\tau}\left(\tau^{-1} \sigma(x)-x\right)=0$ or, moving scalars to the left

$$
\sum_{\sigma, \tau} a_{\sigma, \tau}(\sigma(x)-\tau(x)) u_{\sigma} \otimes v_{\tau}=0
$$

for every $x \in K$. Since $K$ is assumed to be a domain and $t$ injective, we see that $a_{\sigma, \tau}=0$ if $\sigma \neq \tau$. This shows that $K_{t}^{\alpha} G \times_{K} K_{t}^{\beta} G=\left\{\sum_{\sigma} a_{\sigma} u_{\sigma} \otimes v_{\sigma}\right\}$; i.e., it is a kind of "diagonal." How are the elements $u_{\sigma} \otimes v_{\sigma}$ and $u_{r} \otimes v_{r}$ multiplied?

One sees easily that

$$
\left(u_{\sigma} \otimes v_{\sigma}\right)\left(u_{\tau} \otimes v_{\tau}\right)=f(\sigma, \tau) g(\sigma, \tau) u_{\sigma \tau} \otimes v_{\sigma \tau}
$$

Thus if $K_{t}^{\alpha \beta} G=\amalg K w_{\sigma}$ with $w_{\sigma} w_{\tau}=f(\sigma, \tau) g(\sigma, \tau) w_{\sigma \tau}$ it is plain that the map

$$
K_{t}^{\alpha} G \times_{K} K_{t}^{\beta} G \rightarrow K_{t}^{\alpha \beta} G
$$

sending $\sum a_{\sigma} u_{\sigma} \otimes v_{\sigma}$ to $\sum a_{\sigma} w_{\sigma}$ is an isomorphism of $K / k$ algebras. This ends the proof.

Remark. As before the condition that $K$ be a domain can be weakened to "given $\sigma \neq 1(\sigma \in G)$ there exists $x \in K$ such that $\sigma(x)-x$ is not a zero divisor in $K$."

The theorem just proved can be viewed as saying that the "СРC" map CPC: $H^{2}\left(G, K^{*}\right) \rightarrow$ classes of $K / k$ algebras (up to isomorphisms) with the Sweedler product $\}$ is a homomorphism. To narrow down its range is now a matter of choice. The following has been suggested by D. Zelinsky.

Let $\mathscr{C}$ be the set of (isomorphism classes) of $K / k$ algebras $A$ enjoying the following property: $(\mathscr{C}) A$ is a direct sum of $K$ bimodules $\left\{U_{\sigma}\right\}_{\sigma \in G}$, each $U_{\sigma}$ being a free left $K$-module of rank 1 and its right structure is related to its left structure by

$$
u x=\sigma(x) u \quad\left(u \in U_{\sigma}, x \in K\right)
$$

It is easy to see that, in $A, U_{\sigma} U_{\tau} \subset U_{\sigma \tau}$ if $K$ is assumed to be an integral domain. If $K$ is a field it turns out that $U_{\sigma} U_{\tau}=U_{\sigma \tau}$ and $\mathscr{C}$ is exactly the image of the CPC.

We now turn to the question of injectivity.
(2.3) Theorem. If $K$ is a domain and $t: G \rightarrow \operatorname{Aut}_{k}(K)$ is injective then $C P C: H^{2}\left(G, K^{*}\right) \rightarrow \mathscr{C}$ is injective.

Proof. Let $\alpha, \beta \in H^{2}\left(G, K^{*}\right)$ and assume $h: K_{t}^{\alpha} G \leadsto K_{t}^{\beta} G$ as $K / k$ algebras. We must prove $\alpha=\beta$. Write $K_{t}^{\alpha} G=\amalg K u_{\sigma}$, with $u_{\sigma} u_{\tau}=f(\sigma, \tau) u_{\sigma \tau}$ where $f$
represents $\alpha$, and $K_{t}^{\beta} G=\amalg K v_{\sigma}$ with $v_{\sigma} v_{\tau}=g(\sigma, \tau) v_{\sigma \tau}, g$ represents $\beta$. We prove that $f$ is cohomologous to $g$. Let $h\left(u_{\sigma}\right)=z_{\sigma}$. If $x \in K h\left(x u_{\sigma}\right)=$ $h\left(u_{\sigma}\left(\sigma^{-1}(x)\right)\right)=h\left(u_{\sigma}\right) \sigma^{-1}(x)=x h\left(u_{\sigma}\right)$. Thus $z_{\sigma}$ normalizes $K$ and by (1.2) $z_{\sigma}$ is proportional to $v_{\sigma}$. Say $z_{\sigma}=\lambda_{\sigma} v_{\sigma}$ where $\lambda_{\sigma} \in K$. Clearly $\lambda_{\sigma} \in K^{*}$ since $z_{\sigma}$ and $v_{\sigma}$ are invertible.

As $h$ is a homomorphism

$$
h\left(u_{\sigma} u_{\tau}\right)=h\left(u_{\sigma}\right) h\left(u_{\tau}\right)=\lambda_{\sigma} v_{\sigma} \lambda_{\tau} v_{\tau}=\lambda_{\sigma} \sigma\left(\lambda_{\tau}\right) g(\sigma, \tau) v_{\sigma \tau} .
$$

But it also equals $h\left(f(\sigma, \tau) u_{\sigma \tau}\right)=f(\sigma, \tau) \lambda_{\sigma \tau} v_{\sigma \tau}$. Thus $f(\sigma, \tau)=\lambda_{\sigma \tau}^{-1} \lambda_{\sigma} \sigma\left(\lambda_{\tau}\right)$ $g(\sigma, \tau)$ proving that $f$ is equivalent to $g$.

## 3. A Characterization of the Sweedler Product

Let $A, B$ be $K / k$ algebras (where $k, K$ are as above). Then $A \otimes_{k} B$ is, in a natural way, a $K \otimes_{k} K / k$ algebra. If $C$ is a $K \otimes_{k} K / k$ algebra, let $\rho: C \rightarrow A \otimes_{k} B$ be a $K \otimes_{k} K / k$ algebra map. Let $\pi: A \otimes_{k} B \rightarrow A \otimes_{K} B\left(\otimes_{K}\right.$ of left $K$-modules) be the natural projection. If one endows $A \otimes_{k} B$ with a $K$ structure via either of the two natural maps $K \rightarrow K \otimes_{k} K(x \rightarrow x \otimes 1$, $x \rightarrow 1 \otimes x$ ), then $\pi$ is a $K$-module morphism.

Let $\varphi=\pi \circ \rho$. We want to define multiplication in the image of $\varphi$ by the formula $\varphi(c) \varphi\left(c^{\prime}\right)=\varphi\left(c c^{\prime}\right)$. When is it possible? Obviously a necessary and sufficient condition is that $\operatorname{ker}(\varphi)$ is a 2 -sided ideal of $C$. Let us call this product (*). How does the (*) product look in $A \otimes_{K} B$ ?
(3.1) Theorem (with the above notation). $\operatorname{ker}(\varphi)$ is a 2-sided ideal if and only if image $(\varphi) \subset A \times_{K}$ B. If this is the case then the (*) product defined above, in image $(\varphi)$, is the restriction to image $(\varphi)$ of the product in $A \times_{K} B$ defined in Section 2 (i.e., Sweedler's).

In other words if $\varphi(c)=\sum a_{i} \otimes b_{i} \quad$ and $\sum a_{i} x \otimes b_{i}=\sum a_{i} \otimes b_{i} x$, $\varphi\left(c^{\prime}\right)=\sum a_{j}^{\prime} \otimes b_{j}^{\prime} \quad$ and $\quad \sum a_{j}^{\prime} x \otimes b_{j}^{\prime}=\sum a_{j}^{\prime} \otimes b_{j}^{\prime} x \quad$ for $\quad$ all $\quad x \in K \quad$ then $\varphi\left(c c^{\prime}\right)=\sum a_{i} a_{j}^{\prime} \otimes b_{i} b_{j}^{\prime}$.

Remark. If $x, y \in K$ we denote the image of $x \otimes y$ in $C$ by $x \otimes y$. This is a convenient abuse of notation and should not cause confusion.

Proof. Suppose $\operatorname{ker}(\varphi)$ is a 2 -sided ideal. If $c \in C$ let $\rho(c)=\sum a_{i} \otimes_{k} b_{i}$ then $\rho(c(1 \otimes x))=\rho(c) \rho(1 \otimes x)=\sum a_{i} \otimes_{k} b_{i} x$ for $x \in K$, while

$$
\rho(c(x \otimes 1))=\rho(c) \rho(x \otimes 1)=\sum a_{i} x \otimes_{k} b_{i} .
$$

Thus $\varphi(c(1 \otimes x))=\sum a_{i} \otimes_{K} b_{i} x, \varphi(c \cdot(x \otimes 1))=\sum a_{i} x \otimes_{K} b_{i}$. It remains to show that they are equal. Now $\varphi$ is multiplicative, by definition, relative
to the (*) product so $\varphi(c(1 \otimes x))=\varphi(c) \varphi(1 \otimes x)$ and we claim that $\varphi(1 \otimes x)=\varphi(x \otimes 1)$. This follows easily from the assumption that $\rho$ is a $K \otimes K / k$ algebra morphism. Thus $\sum a_{i} x \otimes b_{i}=\sum a_{i} \otimes b_{i} x$ and $\varphi(c) \in A \times{ }_{K} B$.

Conversely suppose $\varphi(C) \subset A \times_{K} B$. Then if $\varphi(c)=0$ and $c^{\prime} \in C$ we must prove $\varphi\left(c c^{\prime}\right)=\varphi\left(c^{\prime} c\right)=0$. We prove first, that $\varphi\left(c c^{\prime}\right)=0$. Write $\varphi(c)=$ $\sum a_{i} \otimes b_{i}$ in $A \otimes_{K} B$. We know that $\sum a_{i} \otimes_{k} b_{j}$ is an element of the form $\sum\left(y_{s} \otimes 1-1 \otimes y_{s}\right)\left(u_{s} \otimes v_{s}\right)$ with $y_{s} \in K$. We call such elements (which make up $\operatorname{ker}(\pi))$ null elements. Then $\rho(c) \rho\left(c^{\prime}\right)$ is clearly also null. Thus $\varphi\left(c c^{\prime}\right)=\pi\left(\rho\left(c c^{\prime}\right)\right)=\pi\left(\rho(c) \rho\left(c^{\prime}\right)\right)=0$.

To show that $\varphi\left(c^{\prime} c\right)=0$ is somewhat more complicated. Write $\varphi\left(c^{\prime}\right)=\sum_{j} c_{j} \otimes_{K} d_{j}$, satisfying $\left({ }_{*}^{*}\right) \sum c_{j} x \otimes d_{j}=\sum c_{j} \otimes d_{j} x$ for $x \in K$. Then

$$
\rho\left(c^{\prime}\right)=\sum_{j} c_{j} \otimes{ }_{k} d_{j}+\sum_{l}\left(z_{l} \otimes 1-1 \otimes z_{l}\right)\left(f_{l} \otimes g_{l}\right) \quad\left(z_{l} \in K, f_{l} \in A, g_{l} \in B\right) .
$$

It follows that $\rho\left(c^{\prime}\right) \rho(c)=\sum_{j, s}\left(c_{j} \otimes d_{j}\right)\left(y_{s} \otimes 1-1 \otimes y_{s}\right)\left(u_{s} \otimes v_{s}\right)+$ null elements. It remains to show that the sum on the right is a null element too. But this sum can be written as $\sum_{s}\left(\sum_{j} c_{j} y_{s} \otimes d_{j}-c_{j} \otimes d_{j} y_{s}\right)\left(u_{s} \otimes v_{s}\right)$ and the inner sum is a null element because of $\binom{*}{*}$. Whence so is the whole sum. This proves that $\varphi\left(c^{\prime} c\right)=0$.

To prove the last statement of the theorem note that we showed above that if $\rho(c)=\sum a_{i} \otimes_{k} b_{i}, \rho\left(c^{\prime}\right)=\sum a_{j} \otimes_{k} b_{j}$ in $A \otimes_{k} B$ then since $\varphi$ satisfies the assumptions (that $\operatorname{ker}(\varphi)$ is a 2 -sided ideal and $\rho$ is a $K \otimes K / k$ algebras map) the image $\varphi(c)$ and $\varphi\left(c^{\prime}\right)$ satisfy

$$
\begin{aligned}
& \sum a_{i} x \otimes_{K} b_{i}=\sum a_{i} \otimes_{K} b_{i} x \\
& \sum a_{j}^{\prime} x \otimes_{K} b_{j}^{\prime}=\sum a_{j}^{\prime} \otimes_{K} b_{j}^{\prime} x, \quad \text { all } x \in K .
\end{aligned}
$$

Now, according to the (*) product $\varphi(c) \varphi\left(c^{\prime}\right)=\varphi\left(c c^{\prime}\right)$, so it remains to show that

$$
\varphi\left(c c^{\prime}\right)=\sum a_{i} a_{j}^{\prime} \otimes_{K} b_{i} b_{j}^{\prime}
$$

But

$$
\varphi\left(c c^{\prime}\right)=\pi\left(\rho\left(c c^{\prime}\right)\right)=\pi\left(\rho(c) \rho\left(c^{\prime}\right)\right)=\pi\left(\sum_{i, j} a_{i} a_{j}^{\prime} \otimes_{k} b_{i} b_{j}^{\prime}\right)=\sum_{i, j} a_{i} a_{j}^{\prime} \otimes_{K} b_{i} b_{j}^{\prime}
$$

and the proof is complete.

## 4. A Generalization of Sweedler's Product

Suppose that $G$ acts on the commutative $k$-algebra $K$ but not faithfully, i.e., the morphism $t: G \rightarrow \operatorname{Aut}_{k}(K)$ has a kernel, $H$, not $\{1\}$. Then the conclusion of Theorem (2.2) does not hold. We show now that in some cases it is possible to modify the construction $\times_{K}$ to obtain the desired result. In this section we assume that $K$ is a domain.

As in the introduction we will define the new operation $\times_{K}$ as $\operatorname{Id}(J) / J$ for an appropriate right ideal $J$ in $K_{t}^{\alpha} G \otimes_{k} K_{t}^{\beta} G$. For our procedure to work we need to make a rather restrictive
(4.1) Assumption. Let inf: $H^{2}\left(G / H, K^{*}\right) \rightarrow H^{2}\left(G, K^{*}\right)$ be the inflation map. Then either $\alpha$ or $\beta$ is in the image of inf.

Say $\alpha \in \operatorname{Im}(\inf )$.
Let $K_{t}^{\alpha} G=\amalg_{\sigma \in G} K u_{\sigma}$ with $u_{\sigma} u_{\tau}=f(\sigma, \tau) u_{\sigma \tau}$ and $K_{t}^{\beta} G=\amalg_{\sigma \in G} K v_{\sigma}$ with $v_{\sigma} v_{\tau}=g(\sigma, \tau) v_{\sigma \tau}$. We assume $f$ and $g$ are normalized and, since $f$ represents an "inflated" element, that $f$ is moreover normalized to satisfy $f(\sigma, \tau)=1$ if $\sigma$ or $\tau$ are in $H$.

Let $J \subset K_{t}^{\alpha} G \otimes K_{t}^{\beta} G$ be the right ideal generated by the set

$$
\{x \otimes 1-1 \otimes x: x \in K\} \cup\left\{\left(u_{\sigma}-1\right) \otimes 1: \sigma \in H\right\}
$$

Let $B=\operatorname{Id}(J)$.
(4.2) Theorem. With the above notation, and assuming (4.1), B/J= $K_{t}^{\alpha \beta} G$.

Proof. The main part of the proof is to identify $B$. To do that we can use the following principles.
( $\mathrm{T}_{1}$ ) If $b \in B$ and $x \in K$ then $(x \otimes 1) b$ and $(1 \otimes x) b$ differ by an element of $J$. Thus elements of $K$ can be moved across the tensor sign (on the left).
( $\mathrm{T}_{2}$ ) Similarly if $b \in B$ and $\sigma \in H$ then $\left(u_{\sigma} \otimes 1\right) b$ and $b$ differ by an element of $J$. Thus $u_{\sigma}$, when multiplying on the left, can be moved across the tensor sign becoming 1 in the process.

We start by identifying some elements of $B$ and then show that these, together with $J$, make up all of $B$.

If $D=\{(\sigma, \tau) \in G \times G: \bar{\sigma}=\bar{\tau}$ in $G / H\}$ we claim that finite sums of the type

$$
\sum_{(\sigma, \tau) \in D} a_{\sigma, \tau} u_{\sigma} \otimes v_{\tau} \quad\left(a_{\sigma, \tau} \in K\right)
$$

are in $B$. Indeed, if $x \in K$, then

$$
\begin{aligned}
& \left(\sum_{(\sigma, \tau) \in D} a_{\sigma, \tau} u_{\sigma} \otimes v_{\tau}\right)(x \otimes 1-1 \otimes x) \\
& \quad=\sum_{(\sigma, \tau) \in D} a_{\sigma, \tau}\left(u_{\sigma} x \otimes v_{\tau}-u_{\sigma} \otimes v_{\tau} x\right) \\
& \quad=\sum_{(\sigma, \tau) \in D} a_{\sigma, \tau}\left(\sigma(x) u_{\sigma} \otimes v_{\tau}-u_{\sigma} \otimes \tau(x) v_{\tau}\right)
\end{aligned}
$$

and by ( $\mathrm{T}_{1}$ ) this is congruent modulo $J$ to

$$
\sum_{(\sigma, \tau) \in D} a_{\sigma, \tau}(\sigma(x)-\tau(x)) u_{\sigma} \otimes v_{\tau}=0
$$

Similarly, using ( $\mathrm{T}_{2}$ ), it is seen that if $h \in H$

$$
\left(\sum_{(\sigma, \tau) \in D} a_{\sigma, \tau} u_{\sigma} \otimes v_{\tau}\right)\left(u_{h}-1\right) \otimes 1
$$

is in $J$.
In order to prove the converse we first need to establish some terminology and notation. Let $\left\{\sigma_{i}\right\}$ be a fixed set of representatives for the cosets of $H$ in $G$. (It can be assumed that $\sigma_{1}=1$.) Every element of the type

$$
\sum_{(\sigma, \tau) \in D} a_{\sigma, \tau} u_{\sigma} \otimes v_{\tau}
$$

(which we have just shown to be in $B$ ) can be represented, modulo $J$, by a sum

$$
\begin{equation*}
\sum_{\left(\sigma_{i}, \tau\right) \in D} a_{i, \tau} u_{i} \otimes v_{\tau} \quad\left(u_{i}=u_{\sigma_{i}} ; a_{i, \tau} \in K\right) \tag{*}
\end{equation*}
$$

where the pairs $\left(\sigma_{i}, \tau\right)$ are distinct. This is seen by using transformations of type $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$. We denote by $\mathrm{B}_{0}$ the left $K$ (where $K=K \otimes 1 \subset K \otimes K$ ) module generated by elements of type (*).

In these terms we are to prove
(4.3) Proposition. (a) $B=B_{0}+J$. Moreover (b) $B_{0} \cap J=\{0\}$. In other words $B$ is a direct sum of $B_{0}$ and $J$.

The second part, (b), will be needed to establish the isomorphism of $B / J$ and $K_{t}^{\alpha \beta} G$.

Proof. We will need to use the existence of a $K$-linear function

$$
\eta: K_{t}^{\alpha} G \otimes_{k} K_{t}^{\beta} G \rightarrow K_{t}^{\alpha} G \otimes_{k} K_{i}^{\beta} G
$$

which satisfies for $x, y \in K$

$$
\eta\left(x u_{\sigma} \otimes y v_{\tau}\right)=x y u_{r(\sigma)} \otimes v_{\tau}
$$

where $r(\sigma) \in\left\{\sigma_{i}\right\}$ represents $\sigma$, i.e., $\sigma H=r(\sigma) H$. It is easy to see that such a function exists and is unique.

It is obvious that $\eta \mid B_{0}$ is the identity of $B_{0}$. We claim that $\eta$ is zero on $J$. Indeed every element of $J$ is a sum of elements of type $(x \otimes 1-1 \otimes x)\left(a u_{\sigma} \otimes b v_{\tau}\right),\left(\left(u_{h}-1\right) \otimes 1\right)\left(y u_{\tau} \otimes z v_{\rho}\right)$, where $x, y, z, a, b \in K$, $h \in H$, and $\sigma, \tau, \rho \in G$. So we only need to check that $\eta$ vanishes on such elements, and this is a simple computation. But note that the proof that

$$
\eta\left(\left(\left(u_{h}-1\right) \otimes 1\right)\left(y u_{r} \otimes z v_{\rho}\right)\right)=0
$$

uses the fact that $\alpha$ is an inflation, i.e., that if $h \in H, u_{h} u_{\sigma}=u_{h \sigma}$ for arbitrary $\sigma \in G$.

Part (b) follows easily now, since, if $b \in B_{0} \cap J$ then

$$
b=\eta(b)=0 .
$$

We now prove (a). Let $\sum_{\sigma, \tau} x_{\sigma} u_{\sigma} \otimes y_{\tau} v_{\tau} \in B$. We are to show that, modulo $J$, it is in $B_{0}$. Using $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ it can be transformed to an element of the type

$$
\sum_{i, \tau} a_{i, \tau} u_{i} \otimes v_{\tau} \quad\left(u_{i}=u_{\sigma_{i}}\right)
$$

where $a_{i, \tau} \in K$ and the pairs ( $\sigma_{i}, \tau$ ) are all distinct. Such a sum can be split to its "diagonal" and "non-diagonal" parts:

$$
\sum_{i, \tau} a_{i, \tau} u_{i} \otimes v_{\tau}=\sum_{\left(\sigma_{i}, \tau\right) \in D}+\sum_{\left(\sigma_{i}, \tau\right) \notin D} .
$$

The diagonal part is the first sum on the right and the non-diagonal part is the second sum. Since the diagonal part is already known to be in $B_{0}$, we can concentrate on the non-diagonal part. So we assume that we are given a purely non-diagonal element $b$ in $B$. We shall prove it is necessarily zero. Write

$$
b=\sum_{i, \tau} a_{i, \tau} u_{i} \otimes v_{\tau}
$$

We collect together those pairs $(i, \tau)$ with fixed $i$ and coset $\tau H$ :

$$
b_{i, r(\tau)}=\sum_{\tau H=r(\tau) H} a_{i, \tau} u_{i} \otimes v_{\tau} .
$$

Then $b=\sum_{i} \sum_{r(\tau)} b_{i, r(\tau)}$. We want to prove $b_{i, r(\tau)}=0$ for each $i$ and $r(\tau) \in\left\{\sigma_{i}\right\}$.
As $b \in B$, we know that, for $x \in K, b(x \otimes 1-1 \otimes x) \in J$. Now, $b_{i, r(\tau)}(x \otimes 1-1 \otimes x)=\left(\sigma_{i}(x)-\tau(x)\right) b_{i, r(\tau)}$ and this is non-zero (for some $x$ ) if $b_{i, r(\tau)} \neq 0$ since $b$ is purely non-diagonal and $K$ a domain.

We fix $i$ and $r(\tau)$. We will show actually that there exist $\lambda \neq 0, \lambda \in K$, such that $\lambda b_{i, r(\tau)} \in J$. As $\eta\left(\lambda b_{i, r(\tau)}\right)=\lambda b_{i, r(\tau)}$ this would prove that $\lambda b_{i, r(\tau)}$, and hence $b_{i,(\mathrm{r})}$ vanish.

Let $x_{0} \in K$ be such that $\sigma_{i}\left(x_{0}\right) \neq \tau\left(x_{0}\right)$ for the pair $(i, r(\tau))$ fixed above. We know that

$$
b\left(x_{0} \otimes 1-1 \otimes x_{0}\right) \equiv \sum_{j} \sum_{r(\tau)}\left(\sigma_{j}\left(x_{0}\right)-\tau\left(x_{0}\right)\right) b_{j, r(\tau)}=\tilde{b} \in J .
$$

Here $\equiv$ denotes congruence modulo $J$.
For each $j$ let

$$
c_{j}=\sum_{r(\tau)}\left(\sigma_{j}\left(x_{0}\right)-\tau\left(x_{0}\right)\right) b_{j, r(\tau)} .
$$

If $j \neq i$ (recall that $i$ was fixed above) let $y_{j} \in K$ be such that $\sigma_{j}\left(y_{j}\right) \neq \sigma_{i}\left(y_{j}\right)$. Note that

$$
\left(\sigma_{j}\left(y_{j}\right) \otimes 1\right) \tilde{b}-\tilde{b}\left(y_{j} \otimes 1\right)
$$

is a sum of left $K$ multiples of $c_{l}$ 's but that (i) $c_{j}$ cancels out, (ii) $c_{i}$ does appear, multiplied by a non-zero factor (from $K$ ). If we carry out this process for each $j(j \neq i)$ the end result is a non-zero multiple of $c_{i}$. Thus we proved there exists $\lambda \neq 0, \lambda \in K$, such that $\lambda c_{i} \in J$.

It should be noticed that in the computation above we used implicitly (to show that $\left.\left(y_{j} \otimes 1\right) \vec{b} \in J\right)$ the fact, established previously, that $K \otimes_{k} K \subset B$.
A similar computation, but with $1 \otimes y$ instead of $y \otimes 1$ and utilizing $\mathrm{T}_{1}$, proves now that there exists $\mu \neq 0, \mu \in K$, such that $\mu b_{i, r(\tau)} \in J$. As observed above, this completes the proof of the proposition.

Continuation of the proof of (4.2). We describe a homomorphism $\varphi: B \rightarrow K_{t}^{\alpha \beta} G$, by defining $\varphi(J)=0$ while if $b=\sum_{(i, \tau) \in D} a_{i, \tau} u_{i} \otimes v_{\tau} \in B_{0}$ then we define

$$
\varphi(b)=\sum a_{i, \tau} w_{\tau}
$$

Here $K_{t}^{\alpha \beta} G$ is taken as $\amalg_{\tau \in G} K w_{\tau}$ with $w_{\sigma} w_{\tau}=f(\sigma, \tau) g(\sigma, \tau) w_{\sigma \tau}$. Clearly $\varphi \mid B_{0}: B_{0} \rightarrow K_{t}^{\alpha \beta} G$ is bijective and $K$-linear. It remains to prove $\varphi$ is multiplicative.

It suffices to prove that if $b_{1}, b_{2} \in B_{0}$ then $\varphi\left(b_{1} b_{2}\right)=\varphi\left(b_{1}\right) \varphi\left(b_{2}\right)$. Since elements of $B_{0}$ are diagonal, we can write

$$
b_{1}=\sum_{\tau} a_{\tau}^{(1)} u_{r(\tau)} \otimes v_{\tau}, \quad b_{2}=\sum_{\sigma} a_{\sigma}^{(2)} u_{r(\tau)} \otimes v_{\sigma}
$$

where $a_{\tau}^{(1)}, a_{\sigma}^{(2)} \in K$ and we recall that $r(\tau) \in\left\{\sigma_{i}\right\}$ is the representative of the coset $\tau H$. Clearly

$$
\varphi\left(b_{1}\right) \varphi\left(b_{2}\right)=\sum_{\tau} a_{\tau}^{(1)} w_{\tau} \cdot \sum_{\sigma} a_{\sigma}^{(2)} w_{\sigma}=\sum_{\tau, \sigma} a_{\tau}^{(1)} \tau\left(a_{\sigma}^{(2)}\right) f(\tau, \sigma) g(\tau, \sigma) w_{\tau \sigma}
$$

On the other hand

$$
\begin{aligned}
b_{1} b_{2} & =\sum_{\tau, \sigma} a_{\tau}^{(1)} \tau\left(a_{\sigma}^{(2)}\right) f(r(\tau), r(\sigma)) u_{r(\tau) \cdot r(\sigma)} \otimes g(\tau, \sigma) v_{\tau \sigma} \\
& \equiv \sum_{\tau, \sigma} a_{\tau}^{(1)} \tau\left(a_{\sigma}^{(2)}\right) f(\tau, \sigma) g(\tau, \sigma) u_{r(\tau \sigma)} \otimes v_{\tau \sigma} \quad(\bmod J)
\end{aligned}
$$

The last congruence follows from the fact that $\alpha$ is an inflation, a $T_{2}$ transformation (to get rid of a $u_{h}$ ) and a $\mathrm{T}_{1}$ transformation (to move $g(\tau, \sigma)$ across the tensor sign).

It is now easily seen that $\varphi\left(b_{1} b_{2}\right)=\varphi\left(b_{1}\right) \varphi\left(b_{2}\right)$.
This completes the proof of (4.2).
Finally, to end this section, we discuss briefly the generalization of Theorem (3.1) to the context of working with $\operatorname{Id}(I) / I$ (as described in the introduction). Let $A$ be a $k$-algebra. It is not assumed that $A$ is a $K / k$ algebra.

Let $I$ be a right ideal in $A$. We denote by $\pi$ the canonical projection $A \rightarrow A / I$.
(4.4) Theorem. Let $C$ be a k-algebra and $\rho: C \rightarrow A$ a k-algebra homomorphism whose image contains I. Let $\varphi=\pi \circ \rho: C \rightarrow A \otimes_{k} A / I$. Then $\operatorname{ker}(\varphi)$ is a 2 -sided ideal if, and only if, image $(\varphi) \subseteq \operatorname{Id}(I)$. If this is the case then $\varphi$ is an algebra homomorphism into $\operatorname{Id}(I) / I$.

The proof is left to the reader. It is much the same as the proof of (3.1), and is in fact simpler.

## 5. Equivariant Projective Representations

As before we fix an action $t: G \rightarrow \mathrm{Aut}_{k}(K)$ of $G$ on $K$ (over $k$ ). We also fix, for the duration of this section, a homomorphism $u: \sigma \rightarrow u_{\sigma}$ from $G$ to
the group of $k$-linear automorphisms of the $K$ module $K G: u_{\sigma}$ acts on $x r$ ( $x \in K, \tau \in G$ ) by

$$
u_{\sigma}(x \tau)=\sigma(x) \sigma \tau
$$

This homomorphism is the equivariant regular representation of $G$ (given $t$ ). In general a ( $K / k, \sigma$ ) automorphism of $K G$ is a $k$-linear automorphism $\varphi: K G \rightarrow K G$ which satisfies

$$
\varphi(x a)=\sigma(x) \varphi(a), \quad x \in K, a \in K G .
$$

The set of such automorphisms will be denoted by $\mathrm{Aut}_{\kappa / k, \sigma}(K G)$. The union, over $G$, of these sets is a group Aut ${ }_{K / k}(K G)$. For example, the elements $u_{\sigma}$ mentioned above lie in $\mathrm{Aut}_{K / k, \sigma}(K G)$.

It is clear that Aut $_{\kappa}(K G)=$ Aut $_{\kappa / k, 1}(K G)$ is a normal subgroup of Aut $_{K / k}(K G)$. Two of its subgroups are important to us. One is $K^{*}$, the group of invertible elements of $K$ considered as operators on $K G$ (by left multiplication). The other is the group of "diagonal" $K$-linear automorphisms of $K G$, denoted by $D$ Aut $_{K}(K G)$, and defined by saying that $\varphi \in D$ Aut $_{K}(K G)$ if relative to the "canonical" basis of $K G$ (i.e., $G$ ) its matrix is diagonal. It is easily seen that $K^{*}$ is normal (but not central!) in Aut ${ }_{K / k}(K G)$. The factor groups obtained by dividing out $K^{*}$ will be designated by prefixing a $P$. Thus

$$
\begin{aligned}
\operatorname{Aut}_{K / k}(K G) / K^{*} & =P \operatorname{Aut}_{K / k}(K G) \\
\operatorname{Aut}_{K}(K G) / K^{*} & =P \operatorname{Aut}_{K}(K G) \\
D \operatorname{Aut}_{K}(K G) / K^{*} & =P D \operatorname{Aut}_{K}(K G), \quad \text { etc. }
\end{aligned}
$$

An equivariant projective representation (EPR for short) is a map

$$
v: G \rightarrow \operatorname{Aut}_{K / k}(K G)
$$

such that
(i) $v(\sigma) \in \mathrm{Aut}_{K / k, \sigma}(K G)$ for every $\sigma \in G$, and
(ii) the composition $G \rightarrow{ }^{v} \mathrm{Aut}_{K / k}(K G) \rightarrow P$ Aut $_{K / k}(K G)$ is a homomorphism.

It is denoted by $\hat{v}$.
An equivariant projective representation is called regular if it satisfies, in addition to (i) and (ii),
(iii) $v(\sigma)(x \tau)=\sigma(x) p(\sigma, \tau) \sigma \tau$ with $p(\sigma, \tau) \in K^{*}$.

If $v: G \rightarrow \mathrm{Aut}_{K / k}(K G)$ is an equivariant projective representation then
since $\hat{v}$ is a homomorphism $v(\sigma \tau)$ and $v(\sigma) \cdot v(\tau)$ are proportional, with factor of proportionality $f(\sigma, \tau) \in K^{*}$ :

$$
v(\sigma) v(\tau)=f(\sigma, \tau) v(\sigma \tau)
$$

The associativity $(v(\sigma) v(\tau)) v(\rho)=v(\sigma)(v(\tau) v(\rho))$ means that $f: G \times$ $G \rightarrow K^{*}$ is a cocycle. We call $f$ the "associated cocycle" of $v$.

We now come to the important notion of equivalence of equivariant projective representations. Two equivariant projective representations $v, w: G \rightarrow \mathrm{Aut}_{K / k}(K G)$ will be considered equivalent if there is a $K$-linear automorphism $\varphi$ of $K G$ and elements $\lambda_{\sigma} \in K^{*}$ such that for every $\sigma \in G$, $z \in K G$

$$
\varphi(v(\sigma) z)=\lambda_{\sigma} w(\sigma)(\varphi(z)) .
$$

This can be rephrased as follows. $P$ Aut $K_{K}(K G)$ acts on $P$ Aut $_{K / k}(K G)$ by "conjugation." If $\varphi \in$ Aut $_{K}(K G)$, let $\hat{\varphi}$ be its image in $P$ Aut ${ }_{K}(K G)$. To say that $v$ is equivalent to $w$ is the same as saying that $\hat{\varphi} \hat{v} \hat{\varphi}^{-1}=\hat{w}$; i.e., $\hat{\varphi} \hat{v}(\sigma) \hat{\varphi}^{-1}=\hat{w}(\sigma)$ for all $\sigma \in G$. It is easily seen that the relation just defined is indeed an equivalence relation. We define an action of $G$ on Aut ${ }_{K / k}(K G)$ and its subgroup $\mathrm{Aut}_{K}(K G)$, also by "conjugation": If $\psi \in \mathrm{Aut}_{K / k, \tau}(K G)$ and $\sigma \in G$ then $\sigma \psi=u_{\sigma} \cdot \psi \cdot u_{\sigma}^{-1}$. It is immediately seen that $\sigma \psi \in \operatorname{Aut}_{K / k, \sigma \tau \sigma^{-1}}(K G)$. This action of $G$ on Aut $_{K / k}(K G)$ also normalizes $D$ Aut ${ }_{K}(K G)$ and $K^{*}$ and thus defines an action of $G$ on $P$ Aut $_{K / k}(K G)$, $P$ Aut $_{K}(K G)$, and $P D$ Aut $_{K}(K G)$.

If $v: G \rightarrow$ Aut $_{K / k}(K G)$ us an equivariant projective representation then, for each $\sigma \in G, v(\sigma) u_{\sigma}^{-1}=\varphi(\sigma) \in \operatorname{Aut}_{K}(K G)$.
(5.1) Lemma. $\hat{\varphi}: G \rightarrow P \operatorname{Aut}_{K}(K G)$ is a 1 -cocycle.

This simply means that for $\sigma, \tau \in G, \hat{\varphi}(\sigma \tau)=\hat{\varphi}(\sigma) \sigma(\hat{\varphi}(\tau))$; we refer the reader to [2, Appendix, p.123] for general information in non-commutative cohomology.

Proof.

$$
\begin{aligned}
\varphi(\sigma \tau) & =v(\sigma \tau) u_{\sigma \tau}^{-1}=f^{-1}(\sigma, \tau) v(\sigma) v(\tau) u_{\tau}^{-1} u_{\sigma}^{-1} \\
& =f^{-1}(\sigma, \tau) \varphi(\sigma) u_{\sigma} \varphi(\tau) u_{\tau} u_{\tau}^{-1} u_{\sigma}^{-1} \\
& =f^{-1}(\sigma, \tau) \varphi(\sigma) \sigma(\varphi(\tau))
\end{aligned}
$$

so $\hat{\varphi}(\sigma \tau)=\hat{\varphi}(\sigma) \sigma(\hat{\varphi}(\tau))$, as required.
This defines a map from the set of equivariant projective representations of $G$ in $K G$ (with fixed action, $t$, of $G$ on $K$ ) into the set $H^{1}\left(G, P\right.$ Aut $\left._{K}(K G)\right)$ by $v \rightarrow[\hat{\varphi}] \in H^{1}\left(G, P A u t_{K}(K G)\right)$. If $w$ is an
equivariant projective representation equivalent to $v$, write $w(\sigma)=\psi(\sigma) u_{\sigma}$, where $\psi(\sigma) \in \mathrm{Aut}_{K}(K G)$. Let $\eta \in \mathrm{Aut}_{K}(K G)$ be an automorphism implementing the equivalence $v \sim w$. Thus for every $\sigma \in G$

$$
\eta \varphi(\sigma) u_{\sigma}=\lambda_{\sigma} \psi(\sigma) u_{\sigma} \eta \quad\left(\lambda_{\sigma} \in K^{*}\right)
$$

which implies $\eta \varphi(\sigma)=\lambda_{\sigma} \psi(\sigma) \sigma(\eta)$ or $\hat{\eta} \hat{\varphi}(\sigma) \sigma(\hat{\eta})^{-1}=\hat{\psi}(\sigma)$. Thus we see that the map $v \rightarrow[\hat{\varphi}]$ is constant on equivalence classes.

Let $E_{K / k}(G)$ denote the set of equivalence classes of equivariant projective representations of $G$ in $K G$. We denote the class of $v$ by [ $v]$. The above discussion proves that we have defined a map

$$
d: E_{K / k}(G) \rightarrow H^{1}\left(G, P \operatorname{Aut}_{K}(K G)\right)
$$

(5.2) Proposition. The map $d$ is bijective.

Proof. We define an inverse to $d$. Given a class in $H^{1}\left(G, P\right.$ Aut $\left._{K}(K G)\right)$ choose a representative cocycle, i.e., a map $\theta: G \rightarrow P$ Aut $_{K}(K G)$. Choose $\varphi: G \rightarrow \operatorname{Aut}_{K}(K G)$ lifting $\theta$, i.e., such that $\hat{\varphi}=\theta$. Let $v: G \rightarrow \operatorname{Aut}_{K / k}(K G)$ by $v(\sigma)=\varphi(\sigma) u_{\sigma}$. It is easily seen (since $\theta$ is a cocycle) that $v$ is an equivariant projective representation. It remains to prove that the correspondence [ $\theta$ ] goes to [ $v$ ] just described is well defined and that it is inverse to $d$. This is routine and is left to the reader.

The short exact sequence of groups with $G$ action

$$
1 \rightarrow K^{*} \rightarrow \operatorname{Aut}_{K}(K G) \rightarrow P \operatorname{Aut}_{K}(K G) \rightarrow 1
$$

gives rise to a connecting homomorphism $\delta: H^{1}\left(G, P\right.$ Aut $\left._{K}(K G)\right) \rightarrow$ $H^{2}\left(G, K^{*}\right)$. How does the map $\delta \circ d$ look? It is immediately checked that given an equivariant projective representation $v: G \rightarrow \operatorname{Aut}_{K / k}(K G)$ then $\delta(d[v])$ ) is represented by the cocycle $f(\sigma, \tau)$ which is defined by $v(\sigma) v(\tau)=f(\sigma, \tau) v(\sigma \tau), f(\sigma, \tau) \in K^{*}$.
(5.3) Lemma. $\quad \delta: H^{1}\left(G, P \operatorname{Aut}_{K}(K G)\right) \rightarrow H^{2}\left(G, K^{*}\right)$ is onto.

Proof. Let $f: G \times G \rightarrow K^{*}$ be a 2 -cocycle. We exhibit an equivariant projective representation $v$ such that $\delta(d([v]))=[f]$. Define $v: G \rightarrow \mathrm{Aut}_{K}(K G)$ by $v(\sigma)\left(\sum_{\tau} a_{\tau} \tau\right)=\sum_{\tau} \sigma\left(a_{\tau}\right) f(\sigma, \tau) \sigma \tau$. This is easily seen to be a regular equivariant projective representation satisfying the requirements.

There is an abelian subgroup of $P \operatorname{Aut}_{K}(K G), P D$ Aut $_{K}(K G)$, which we defined above. The inclusion $P D$ Aut $_{K}(K G) \leftrightarrows P \operatorname{Aut}_{K}(K G)$ induces a map in cohomology

$$
e: H^{1}\left(G, P D \operatorname{Aut}_{K}(K G)\right) \rightarrow H^{1}\left(G, P \operatorname{Aut}_{K}(K G)\right)
$$

and the short exact sequence

$$
\begin{equation*}
1 \rightarrow K^{*} \rightarrow D \text { Aut }_{K}(K G) \rightarrow P D \text { Aut }_{K}(K G) \rightarrow 1 \tag{*}
\end{equation*}
$$

induces a connecting homomorphism (since $P D \mathrm{Aut}_{K}(K G)$ is abelian)

$$
\delta_{1}: H^{1}\left(G, P D \operatorname{Aut}_{K}(K G)\right) \rightarrow H^{2}\left(G, K^{*}\right)
$$

Clearly the diagram

commutes (this follows from the definition of connecting maps).
(5.4) Proposition. $\delta_{1}$ is an isomorphism.

Corollary. e is injective.
Note also that the proposition gives another proof for (5.3).
The proposition will follow from an application of "Shapiro's lemma" which we now recall. If $M$ is a $G$ module let $M_{0}$ be $M$ as an abelian group but with a trivial $G$-action. Let $\operatorname{Coind}(M)=\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} G, M)$ with diagonal action of $G$; i.e., if $h: G \rightarrow M$ and $\sigma, \tau \in G$ then $(\sigma h)(\tau)=\sigma\left(h\left(\sigma^{-1} \tau\right)\right.$ ).
(5.5) Lemma. Coind $(M)$ is cohomologically trivial, i.e., $H^{i}(G, \operatorname{Coind}(M))$ $=0$ for $i>0$.
Proof. This is well known for $M_{0}$ (see [2, p. 112]), so it suffices to prove that $\operatorname{Coind}(M) \cong \operatorname{Coind}\left(M_{0}\right)$ as $G$-modules. The isomorphism is similar to the isomorphism described in [2] (see the remark on p. 118): if $h: G \rightarrow M$ let $h_{0}: G \rightarrow M_{0}$ be defined by $h_{0}(\sigma)=\sigma^{-1} h(\sigma)$ (the latter considered in $M_{0}$ ). This proves the lemma.
(5.6) Lemма. $D \operatorname{Aut}_{K}(K G) \cong \operatorname{Map}\left(G, K^{*}\right) \cong \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z} G, K^{*}\right)$.

Here, too, $G$ acts on $\operatorname{Map}\left(G, K^{*}\right)$ diagonally as above.
Proof. The second isomorphism is easy and given by restriction. To prove the first isomorphism let $\rho$ be a $K$-linear "diagonal" automorphism of $K G$. Then $\rho(\tau)=a(\tau) \tau$ with $a(\tau) \in K^{*}$. To $\rho$ we correspond the map
$h_{\rho}: \tau \rightarrow a(\tau)$. It is clearly bijective, and we must show that $h_{\sigma(\rho)}=\sigma\left(h_{\rho}\right)$. Now $\sigma(\rho)=u_{\sigma} \circ \rho \circ u_{\sigma}^{-1} \quad$ so $\quad h_{\sigma(\rho)}(\tau)=\sigma\left(a\left(\sigma^{-1} \tau\right)\right) \quad$ and $\quad \sigma\left(h_{\rho}\right)(\tau)=$ $\sigma\left(h_{\rho}\left(\sigma^{-1} \tau\right)\right)=\sigma\left(a\left(\sigma^{-1} \tau\right)\right)$, as required.

Proof of (5.4). According to (5.5) and (5.6), $D$ Aut $_{K}(K G)$ is cohomologically trivial. Thus the long cohomology exact sequence of $\left(^{*}\right.$ ) says that for $i>0$ the connecting homomorphisms

$$
H^{i}\left(G, P D \operatorname{Aut}_{K}(K G)\right) \rightarrow H^{i+1}\left(G, K^{*}\right)
$$

are isomorphisms. The case $i=1$ is (5.4).
We wish, finally, to explain what the elements of $H^{1}\left(G, P D\right.$ Aut $\left._{K}(K G)\right)$ look like when considered as elements of $E_{K / k}(G)$ (which is identified with $H^{1}\left(G, P\right.$ Aut $\left._{K / k}(K G)\right)$ via $\left.d\right)$. Recall that we defined above the notion of a regular equivariant projective representation $v$ to be one that is diagonal relative to the canonical basis of $K G$, which is $G$. If, say, $v(\sigma) \tau=p(\sigma, \tau)(\sigma \tau)$ it does not follow that $p$ is a 2 -cocycle. If $p$ is the 2 -cocycle corresponding to $v$, i.e., such that $v(\sigma) v(\tau)=p(\sigma, \tau) v(\sigma \tau)$ for all $\sigma, \tau \in G$, then we call $v$ standard. Of course to every regular representation corresponds a standard representation in an obvious way.
(5.7) Lemma. A regular equivariant projective representation and its corresponding standard equivariant projective representation are equivalent.

Proof. Let $v: G \rightarrow \operatorname{Aut}_{K / k}(K G)$ be the regular equivariant projective representation, so that $v(\sigma) \tau=p(\sigma, \tau) \sigma \tau$ and let $f: G \times G \rightarrow K^{*}$ be the cocycle associated with $v$, so that

$$
v(\sigma) v(\tau)=f(\sigma, \tau) v(\sigma \tau) .
$$

The corresponding standard equivariant projective representation is the map $w: G \rightarrow \operatorname{Aut}_{K / k}(K G)$ defined by $w(\sigma)(x \tau)=\sigma(x) f(\sigma, \tau) \sigma \tau \quad(x \in K$; $\sigma, \tau \in G$ ). Equivalence of $v$ and $w$ is given by a $K$-linear automorphism $\varphi$ of $K G$ satisfying $\varphi(v(\sigma) z)=\lambda_{\sigma} w(\sigma) \varphi(z)$ for some $\lambda_{\sigma} \in K^{*}$. If we try to define a diagonal such automorphism $\varphi(\tau)=c_{\tau} \tau$ with $c_{\tau} \in K^{*}$ we see that the "constant" $c_{\tau}$ must satisfy (taking $z=1 \in K G$ )

$$
p(\sigma, 1) c_{\sigma}=\lambda_{\sigma} c_{1} f(\sigma, 1) .
$$

Thus we may try if the choice $c_{\sigma}=f(\sigma, 1) / p(\sigma, 1)$ does the job. Note that $f(1,1)=p(1,1)$ will follow from the computation below so that $c_{1}=1$. We need to check if

$$
\varphi(v(\sigma) \tau)=\varphi(p(\sigma, \tau) \sigma \tau)=p(\sigma, \tau) f(\sigma \tau, 1) p(\sigma \tau, 1)^{-1} \sigma \tau
$$

(where $\sigma, \tau \in G$ ) is equal to

$$
w(\sigma) \varphi(\tau)=w(\sigma)\left(f(\tau, 1) p(\tau, 1)^{-1} \tau\right)=\sigma\left(f(\tau, 1) p(\tau, 1)^{-1}\right) f(\sigma, \tau) \sigma \tau
$$

Thus we need to compare $f(\sigma \tau, 1) p(\sigma, \tau) p(\sigma \tau, 1)^{-1}$ with $f(\sigma, \tau) \sigma(f(\tau, 1))$ $\sigma\left(p(\tau, 1)^{-1}\right)$. Collecting $f$ 's and $p$ 's together we ask if the equality

$$
f(\sigma, \tau) \sigma(f(\tau, 1)) f(\sigma \tau, 1)^{-1}=p(\sigma, \tau) \sigma(p(\tau, 1)) p(\sigma \tau, 1)^{-1}
$$

holds. As $f$ is a cocycle we see that the relation $d f(\sigma, \tau, 1)=1$ implies that the left hand side equals $f(\sigma, \tau)$. Now the associativity $v(\sigma)(v(\tau) 1)=$ $(v(\sigma) v(\tau))(1)$ implies exactly

$$
\sigma(p(\tau, 1)) p(\sigma, \tau)=f(\sigma, \tau) p(\sigma \tau, 1)
$$

which is the required equality.
Now if $f: G \times G \rightarrow K^{*}$ is a 2-cocycle, it is easy to see that if $v$ is the standard equivariant projective representation associated with $f$ (i.e., $v(\sigma) \tau=f(\sigma, \tau) \sigma \tau)$ the image of [v] under $\delta \circ d$ is [ $f]$. Combined with (5.7) we get
(5.8) Proposition. $d^{-1} H^{1}\left(G, P D\right.$ Aut $\left._{K}(K G)\right)$ is the set of equivalence classes of regular equivariant projective representations.

## References

1. E. Aljadeff and S. Rosset, Global dimensions of crossed products, J. Pure Appl. Algebra 40 (1986), 103-113.
2. J. P. Serre, "Local Fields," Springer-Verlag, New York/Berlin, 1979.
3. M. E. Sweedler, Groups of simple algebras, Publ. Math. IHES 44 (1974), 79-190.
