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Let k be a commutative ring and K a commutative k algebra. If G is a 
group acting on K via a homomorphism t: G + Aut, (K), which may (in 
general) have a nontrivial kernel, then the multiplicative group K* of 
invertible elements of K is a G module. The elements of the “galois” 
cohomology group H’(G, K*) give rise to the well known Crossed Product 
Construction (see [ 11). It is defined as follows. Let a E H2(G, K*) and let 
f: G x G + K* be a cocycle representing a, i.e., a = [f 1. The crossed 
product, given t and a, is a k algebra, denoted by K;G. As left K module it 
is LI d E G Ku,, while the product is defined by the rule 

(XU,)(yu,)=xa(y)f(a,r)u,, (x, y E K, 6, r E G). 

It is easily verified that this is an associative k algebra, in fact it is even a 
K” algebra (where p is the fixed ring), and-up to isomorphism of 
algebras-does not depend on the choice of representing cocycle. 

This construction is well known in the case that G is finite and t is 
assumed injective. From now on this will be referred to as the “classical” 
case. Nonclassically, we discussed the global dimension of KYG, assuming K 
is a field, in our paper [ 11. Crossed products are also widely used in 
operator algebras. 

Viewing the Crossed Product Construction (henceforth the CPC) as a 
map from H’(G, K*) to a certain set of algebras the question naturally 
arises: What is the operation on this set of algebras which will make the 
CPC a morphism between monoids or, even, a homomorphism of groups? 
Of course one can answer this question in a vacuous “tautological” way. 
What is being asked is a “natural” operation on some k algebras, like the 
tensor product over the center in the classical case, which will make the 
CPC into a Brauer-like, preferrably injective, homomorphism of groups 
(or, at least, monoids). 

The answer to this question is an operation defined by Sweedler [3]. 
99 

0021~8693/89 $3.00 
Copyright 0 1989 by Academic Press, Inc. 

All rights of reproduction in any form rcscrvcd. 



100 ALJADEFF AND ROSSET 

One has to observe that the CPC carries with it more structure than just 
the k algebra KFG. Also available, given the materials already used (which 
are t and c(), is a “canonical” k algebra injection of K into K;G. The com- 
pound object, which is K;G and the canonical map K + K;G, is called a 
K/k algebra. In Section 2 we show that the CPC is a homomorphism from 
H2(G, K*) to the monoid of all isomorphism classes of K/k algebras (with 
the Sweedler multiplication) and that, under some hypotheses, it is also 
injective. 

In our attempts to fathom the motive behind the Sweedler operation we 
found a characterization of it. This characterization says that, in a certain 
sense Sweedler’s definition is the only one possible. This is described in 
Section 3. The formulation that is thereby obtained in amenable to 
generalization in the non-commutative direction. If R is a ring and Z is a 
right ideal in R the “idealizer” of Z is the subring (XE R: XZC Z}. We 
denote it by Id(Z). It is the unique maximal subring that contains Z as a 
2-sided ideal. Sweedler’s construction is describable as follows. Let A, B be 
K/k algebras. Let Z be the kernel of the canonical projection A Bn B + 
A OK B (A, B taken as left K modules). It is the right ideal of the ring 
A Ok B generated by the set {x@ 1 - 1 (8 x: x E K}. Then the Sweedler 
product A xK B equals Id(Z)/Z. In Section 4 we take a small step towards 
generalizing Sweedler’s construction by showing that if the injectivity 
assumption on t : G + Aut, (K) is dropped it is still possible, for some a and 
b, to find a right ideal .Z in K;G& KfG such that Id(.Z)/.Z= K?G. It seems 
to us that more work remains to be done in this direction. 

Finally in Section 5 we follow a different direction altogether and exhibit 
an analogue, in the present general context, of the classical descent 
theory. We define equivariant projective representations of G on KG 
and show that up to a certain equivalence relation they are classified 
by H’(G, P Aut, (KG)) where P Aut denotes “automorphisms up to 
proportionality in K*.” We then show that a certain subset of this set, 
which is an H’ with coefficients in an abelian subgroup of P Aut, (KG), 
is naturally a group which is mapped, by a connecting homomorphism, 
isomorphically onto H2(G, K*). Finally we show that this subgroup of 
H’(G, P Aut, (KG)) classifies the “regular” (we also use the adjective 
“diagonal” below) equivariant projective representations. 

1. Kfk ALGEBRAS 

As above let k be a commutative ring and K a commutative k algebra. 
A K/k algebra is a pair (A, i) where A is a k-algebra and i: K + A is a 
homomorphism of k-algebras (sending 1, to lA). We will usually abuse the 
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notation and refer to the K/k algebra as A, if i is clear. A morphism of K/k 
algebras A, B is an algebra morphism A + B such that the diagram 

K 

A 
A-B 

commutes. 
If G acts on K via r: G + Aut, (K) and a E H*(G, K*) let f: G x G + K* 

be a cocycle representing a. Let R be the crossed product obtained using J 
The unit of R, 1 R, is f( 1, 1) - ‘u, and there is an embedding K 4 R defined 
by x --t x . 1 R. If R’ is the crossed product obtained using another cocycle g 
(equivalent of f) let A: G + K* be a 1 cochain such that f = g . d1. By 
definition R=LI, Ku,, Ku, with u,u,=~(c, r)u,, and R’=LI, Ku, with 
u,u, = g(a, t)u,,. The K-linear map from R to R’ defined by u, + I(a)u, is 
an isomorphism of algebras sending 1, to 1,. and, being K linear, com- 
mutes with the embeddings of K in R and R’. Thus we have proved the 
following. 

(1.1) PROPOSITION. Given t : G + Aut, (K) the Crossed Producr Con- 
struction (=CPC) is a map from H*(G, K*) to the set of isomorphism 
classes of K/k-algebras. 

We denote the K/k algebra obtained from a by K;G. It is often possible 
to prove stronger results if one assumes that t is injective. For example 

(1.2) LEMMA. Assume t injectiue and K a domain. Then (1) the elements 
of K;G that commute with K elementwise are precisely the elements of K. (2) 
The elements of KFG normalizing K are of the form xu,(x E K, o E G). 

Proof If x xa,u, = (1 a,u,)x for every x E K we must show that 
a, = 0 if c # 1. But (C a,u,)x = (1 a,a(x))u,. If B # 1 let x be such that 
c(x) #x. Then the equality a,x=a,a(x) implies a,=O. Similarly if 
1 xa,u, = (1 a,u,) f (x) for some endomorphism f: K + K then the 
equality x a,(x - of(x))u, = 0 implies f(x) = a-‘(x) for every B such that 
a, # 0. This implies that only one arr can be non-zero. 

Remark. The assumption that K be a domain can be weakened to 
“given c E G there exists an element x such that x-o(x) is not a zero 
divisor.” This technical condition may be useful in analytic contexts where 
K can be a “large” ring of continuous functions. Such rings are hardly ever 
domains. 
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2. MULTIPLICATION OF Klk ALGEBRAS 

Let A, B be K/k algebras. The k algebra A Ok B has a natural maps from 
K: x + x 0 1 and x + 1 Ox. There is a canonical surjection 

x:A@,B-+AQ,B, 

where the tensor product over K is with respect to the left K module struc- 
tures of A and B. ABK B is not an algebra in general. But Sweedler [3] 
has observed that A @k B has a “canonical” submodule which is an algebra 
under the naive, coordinatewise, multiplication.. 

The Sweedler submodule is 

Ax,B= Cai~biEA~‘KB:foreveryxEK,Cai~bix=CaixQbi 

The product structure is defined by the rule (Ciai@ b,)(x,a;@ b,!) = 
xi,jaia,!@bib,l. 

(2.1) LEMMA. With the above multiplication and with the map K + 
Ax,Bbyx-+x@l=l@x Ax,BisaK/kalgebra. 

The proof is straightforward but demands a genuine understanding of 
tensor products. (see [3, Proposition (3.1)]). We shall refer to A xK B as 
the Sweedler product of A and B (over K). 

We now show that the Sweedler product x k answers the question raised 
in the introduction. 

(2.2) THEOREM. Assume that t: G + Aut(K/k) is injective. rf a, /? E 
H*(G, K* ) then K;G x K KtG x K?G as K/k algebras. 

ProoJ We start by identifying the elements of K;G xk KfG inside the 
tensor product K;GQK KfG. Suppose that K;G = LI Ku, with u,u, = 
f(a, ~)u,, and KfG = LI Kv, with v,v, = g(a, t)v,,, f, g cocycles 
representing a, #I E H*(G, K*), respectively. If I,,, ao,ru, @ v, (aa,* E K) is 
to be in K;Gx,KfG it must satisfy ~a,,u,x~vv,=~aa,,,u,~vv,x for 
every x E K. 

Remembering that u,x = a(x)u, and v,x = a(x)v, for a E G, we see that 

c a0.r 4xQv,=Ca,Ax) U,Qv,=~a,,,u,Qaa(x)v, 
(since @k is the tensor product of the two left K structures) 

= C a,,, u,Qv,7-1a(x). 
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Thus we have C aa,ru, @I u,(z-‘a(x) -x) = 0 or, moving scalars to the 
left 

for every x E K. Since K is assumed to be a domain and t injective, we see 
that aa,r = 0 if (r # t. This shows that K;G x K KtG = (C, a,u, @ v,}; i.e., it 
is a kind of “diagonal.” How are the elements U, @ u, and u,@ u, mul- 
tiplied? 

One sees easily that 

Thus if K;pG = IL Kw, with w,M’, =f(a, T) g(o, T) UT,, it is plain that the 
map 

K”G x K KflG + K=fiG I I I 

sending C a,u, @ u, to 1 a,w, is an isomorphism of K/k algebras. This 
ends the proof. 

Remark. As before the condition that K be a domain can be weakened 
to “given cr # l(a~ G) there exists x E K such that a(x) - x is not a zero 
divisor in K.” 

The theorem just proved can be viewed as saying that the “CPC” map 
CPC: H’(G, K*) -. { 1 c asses of K/k algebras (up to isomorphisms) with the 
Sweedler product} is a homomorphism. To narrow down its range is now 
a matter of choice. The following has been suggested by D. Zelinsky. 

Let $? be the set of (isomorphism classes) of K/k algebras A enjoying the 
following property: (59) A is a direct sum of K bimodules { Ub}bE G, each 
U, being a free left K-module of rank 1 and its right structure is related to 
its left structure by 

24x = u(x) u (UE U,, XE K). 

It is easy to see that, in A, U, U, c U,, if K is assumed to be an integral 
domain. If K is a field it turns out that U, U, = U,, and V is exactly the 
image of the CPC. 

We now turn to the question of injectivity. 

(2.3) THEOREM. If K is a domain and t: G + Aut, (K) is injective then 
CPC: H’(G, K*) + V is injective. 

Proof: Let a, #I E H2 (G, K*) and assume h : K;G r KtG as KJk algebras. 
We must prove a = B. Write K;G = LI Ku,, with U,U, = f (a, z)u,, where f 



104 ALJADEFF AND ROSSET 

represents a, and KrG = U Kv, with o,t’, = g(o, T) v,~, g represents b. We 
prove that f is cohomologous to g. Let h(u,) = zO. If XE K h(xu,) = 
h(u,(a-l(x))) = h(u,) c-‘(x) = xh(u,). Thus z, normalizes K and by (1.2) z, 
is proportional to v,. Say z, = &v, where A, E K. Clearly 1, E K* since z, 
and P, are invertible. 

As h is a homomorphism 

But it also equals h(f(a, T)u,,) = f(o, z) &,rv,,. Thus f(o, T) = l;‘&o(&) 
g(o, T) proving that f is equivalent to g. 

3. A CHARACTERIZATION OF THE SWEEDLER PRODUCT 

Let A, B be K/k algebras (where k, K are as above). Then A@,, B is, in a 
natural way, a KOk K/k algebra. If C is a K@I~ K/k algebra, let 
p: C-t A@Ik B be a K@.k K/k algebra map. Let 7~: A@, B-F ABK B (@I~ 
of left K-modules) be the natural projection. If one endows A Bk B with a 
K structure via either of the two natural maps K+ KOk K (x + x63 1, 
x + 1 @x), then 71 is a K-module morphism. 

Let rp = rr D p. We want to define multiplication in the image of cp by the 
formula q(c) rp(c’) = cp(cc’). When is it possible? Obviously a necessary and 
sufficient condition is that ker(rp) is a 2-sided ideal of C. Let us call this 
product (*). How does the (*) product look in A OK B? 

(3.1) THEOREM (with the above notation). ker(cp) is a 2-sided ideal if 
and only if image(q) c A xK B. If this is the case then the (*) product defined 
above, in image(p), is the restriction to image(q) of the product in A xK B 
defined in Section 2 (i.e., Sweedler’s). 

In other words if q(c) = x ai@bi and 1 a,x@b,= Ca,@b,x, 
rp(c’)=xaaj’@bj and Cajx@bbj=xa,f@bjx for all XEK then 
cp(cc’) = C a,aj @ bib:. 

Remark. If x, y E K we denote the image of x @ y in C by x @ y. This is 
a convenient abuse of notation and should not cause confusion. 

Proof. Suppose ker(cp) is a 2-sided ideal. If CE C let p(c) = C aiBk bi 
then p(c( 1 Ox)) = p(c) p( 1 @x) = C aiOk bix for x E K, while 

P(C(X@ l))=p(C) P(X@ 1)=x aix@k bi- 

Thus cp(c( 1 @x)) = C aiOK bix, cp(c . (x @I 1)) = 1 aix@QK bi. It remains to 
show that they are equal. Now cp is multiplicative, by definition, relative 
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to the (*) product so cp(c(1 @IX)) = q(c) rp(1 @x) and we claim 
that cp( 1 @x) = cp(x@ 1). This follows easily from the assumption that p 
is a K@ K/k algebra morphism. Thus C LI~x@!J~=C ai@ bix and 
cp(C)EAX.B. 

Conversely suppose q(C) c A x K B. Then if q(c) = 0 and c’ E C we must 
prove rp(cc’) = cp(c’c) =O. We prove first, that cp(cc’)=O. Write q(c) = 
C ai@ bi in A BK B. We know that C aiQk bi is an element of the form 
C( y,@ 1 - 1 @I y,)(u, @I u,) with ,v, E K. We call such elements (which 
make up ker(n)) nuN elements. Then p(c) p(c’) is clearly also null. Thus 
qqcc’) = n(p(cc’)) = Q(c) p(c’)) = 0. 

To show that q(c’c) = 0 is somewhat more complicated. Write 
cp(c’) = xi cjOK dj, satisfying (2) C cjx @ dj = C cj@ djx for x E K, Then 

P(C’)=Ccj~kdj+C(Z~Ol-l~Z,)(f,Og,) (z[EKf,~A, g,EW 
i I 

It follows that p(c’) p(c) = &S (cj@ dj)( y,@ 1 - 1 @I y,)(u,@ 0,) + null 
elements. It remains to show that the sum on the right is a null element 
too. But this sum ,can be written as CS(xj cjr,6 d, - cj@ dj y,)(u,@ u,) 
and the inner sum is a null element because of (t). Whence so is the whole 
sum. This proves that cp(c’c) = 0. 

To prove the last statement of the theorem note that we showed above 
that if p(c) = c Ui@k bi, p(c’) =x aj@k bj in A @k B then since cp satisfies 
the assumptions (that ker(cp) is a 2-sided ideal and p is a K@ K/k algebras 
map) the image q(c) and cp(c’) satisfy 

Now, according to the (*) product q(c) rp(c’) = cp(cc’), so it remains to 
show that 

But 

~(cc') = n(fJ(CC')) = n(p(C) p(C')) = ?I C u,U~ @k bibi = C UiQ,’ @K bib; 
i.j > i.i 

and the proof is complete. 
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4. A GENERALIZATION OF SWEEDLER'S PRODUCT 

Suppose that G acts on the commutative k-algebra K but not faithfully, 
i.e., the morphism t: G + Aut, (K) has a kernel, H, not { 1 }. Then the con- 
clusion of Theorem (2.2) does not hold. We show now that in some cases 
it is possible to modify the construction x K to obtain the desired result. 
In this section we assume that K is a domain. 

As in the introduction we will define the new operation x K as Id(J)/J 
for an appropriate right ideal J in K;G Ok Kf’G. For our procedure to work 
we need to make a rather restrictive 

(4.1) ASSUMPTION. Let inf: H’(G/H, K*) + H’(G, K*) be the inflation 
map. Then either c1 or /I is in the image of inf. 

Say o! E Im(inf). 
Let K;G = LIOEG Ku, with u,u,=f(a, r) u,, and KtG= IIoEG Ku, with 

Dour = do, r) “CT,. We assume f and g are normalized and, since f 
represents an “inflated” element, that f is moreover normalized to satisfy 
f(a, 5) = 1 if g or T are in H. 

Let Jc K;GQ KfG be the right ideal generated by the set 

Let B = Id(J). 

(4.2) THEOREM. With the above notation, and assuming (4.1), B/J = CfiG. 

Proof: The main part of the proof is to identify B. To do that we can 
use the following principles. 

(T,) If bEB and XEK then (x@ l)b and (l@x)b differ by an 
element of J. Thus elements of K can be moved across the tensor sign (on 
the left). 

(T,) Similarly if b E B and r~ E H then (u,, @ 1) b and b differ by an 
element of J. Thus u,, when multiplying on the left, can be moved across 
the tensor sign becoming 1 in the process. 

We start by identifying some elements of B and then show that these, 
together with J, make up all of B. 

IfD={(a,r)EGxG: c7 = f in G/H} we claim that finite sums of the type 

c arr,rUaQ~Vr @,,,EK) 
(o,r)ED 
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are in B. Indeed, if x E K, then 

( c a cs,r%@U, (xciol-l@x) (0, T)E D ) 
= c ao,,(wCiOu,--u,@u,x) (U.T)E D 
= c a,,(a(~)u,~u~-u,~~(x)u,) (U,T)ED 

and by (T, ) this is congruent modulo J to 

c a,, T (4x)- $x1) u, 63 u, = 0. 
(0, r)sD 

Similarly, using (T,), it is seen that if h E Zf 

( 
C a,,,u,@uv, 

(0. T)ED > 
(uh- 110 1 

is in J. 
In order to prove the converse we first need to establish some 

terminology and notation. Let {cri} be a fixed set of representatives for the 
cosets of H in G. (It can be assumed that 0, = 1.) Every element of the type 

(which we have just shown to be in B) can be represented, modulo J, by a 
sum 

(~ zeDai,,ui@u, (ui=Ubi;ai,,EK), (*) 
,7 

where the pairs (oi, r) are distinct. This is seen by using transformations of 
type T, and T2. We denote by B, the left K (where K= K&I 1 c K@ K) 
module generated by elements of type (*). 

In these terms we are to prove 

(4.3) PROPOSITION. (a) B= B,+J. Moreover (b) B,nJ= (0). In other 
words B is a direct sum of B, and J. 

The second part, (b), will be needed to establish the isomorphism of B/J 
and K@G I . 

Proof: We will need to use the existence of a K-linear function 

‘I : K;G Bk KfG + KTG Blk KfG 
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which satisfies for ?I, J E K 

where r(g)E {ai} represents g, i.e., aH= r(a)H. It is easy to see that such a 
function exists and is unique. 

It is obvious that ~1 B, is the identity of B,. We claim that q is zero 
on J. Indeed every element of J is a sum of elements of type 
(x @I 1 - 1 @O x)(au, @ bu,), ( (uh - 1) 0 1 )( yu, @ zu,), where x, y, z, a, b E K, 
h E H, and cr. t, p E G. So we only need to check that q vanishes on such 
elements, and this is a simple computation. But note that the proof that 

I](((%- 11s l)(Y~r@z~,))=0 

uses the fact that a is an inflation, i.e., that if h E H, u,,u, = uha for arbitrary 
UEG. 

Part (b) follows easily now, since, if b E B, n J then 

b=q(b)=O. 

We now prove (a). Let I,, o x,u,@ yru, E B. We are to show that, 
modulo J, it is in B,,. Using T, and T, it can be transformed to an element 
of the type 

where a, r E K and the pairs (oi, r) are all distinct. Such a sum can be split 
to its “diagonal” and “non-diagonal” parts: 

C”i,rujBuv,= C + C . 

i, r (a,. ?)E D (a,, r)dD 

The diagonal part is the first sum on the right and the non-diagonal part is 
the second sum. Since the diagonal part is already known to be in B,, we 
can concentrate on the non-diagonal part. So we assume that we are given 
a purely non-diagonal element b in B. We shall prove it is necessarily zero. 
Write 

b=&zi,,ui@v,. 
i, r 

We collect together those pairs (i, r) with tixed i and coset sH: 
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Then b= xi I,(,, bi,r(r)e We want to prove bi,,c,, =0 for each i and 
r(t) E {ui>. 

As bEB, we know that, for XEK, b(x@l-l@x)EJ. Now, 
bi,r(r)(x@ I- 1 @XI = (CJi(X) - T(X)) bi.r(r) and this is non-zero (for some x) 
if b. I,T(l) # 0 since b is purely non-diagonal and K a domain. 

We fix i and r(r). We will show actually that there exist A# 0, J E K, such 
that Lbi,r(,) E J. AS V(Jbi,r(r)) = Ab,r(r) this would prove that Abi,(,), and 
hence b,,,(,) vanish. 

Let x0 E K be such that bi(x,,) #$x0) for the pair (i, r(t)) fixed above. 
We know that 

Here - denotes congruence modulo J. 
For each j let 

If j # i (recall that i was fixed above) let yj E K be such that cj( yj) # ai( yj). 
Note that 

is a sum of left K multiples of c,‘s but that (i) cj cancels out, (ii) ci does 
appear, multiplied by a non-zero factor (from K). If we carry out this 
process for each j (j # i) the end result is a non-zero multiple of ci. Thus 
we proved there exists A# 0, 1 E K, such that Aci E J. 

It should be noticed that in the computation above we used implicitly 
(to show that ( yj@ l)a~ J) the fact, established previously, that 
KBk Kc B. 

A similar computation, but with 1 @ y instead of y@ 1 and utilizing T,, 
proves now that there exists p # 0, p E K, such that pbiv,(,) E J. As observed 
above, this completes the proof of the proposition. 

Continuation of the proof of (4.2). We describe a homomorphism 
cp: B+ K;fiG, by defining q(J)=0 while if b=&j.Dai,.ui@uo,E B0 then 
we define 

Here K@G is taken as LI reC Kw, with w,w,= f(o, r) g(a, t) w,,. Clearly 
rp 1 B,: &, -+ K;flG is bijective and K-linear. It remains to prove cp is mul- 
tiplicative. 
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It suffices to prove that if b,, b,E&, then q$b,b,)=cp(b,) cp(b,). Since 
elements of B, are diagonal, we can write 

b,=~uj”u,,,,O~,, b,=~a:*‘u,@o,, 
i c 

where a!‘), aL2) E K and we recall that r(t) E {ci} is the representative of the 
coset rZZ. Clearly 

rp(b,) q(b,) = 1 a;‘)w, . C aL2)w, = 1 u!*‘~(u;~‘)~(T, 6) g(r, a) w,,. 
r (I ‘I. 0 

On the other hand 

The last congruence follows from the fact that u is an inflation, a T, trans- 
formation (to get rid of a u,,) and a T, transformation (to move g(t, a) 
across the tensor sign). 

It is now easily seen that cp(b,b,) = cp(b,) cp(b,). 
This completes the proof of (4.2). 

Finally, to end this section, we discuss briefly the generalization of 
Theorem (3.1) to the context of working with Id(Z)/Z (as described in the 
introduction). Let A be a k-algebra. It is not assumed that A is a K/k 
algebra. 

Let Z be a right ideal in A. We denote by A the canonical projection 
A + A/Z. 

(4.4) THEOREM. Let C be a k-algebra and p: C + A a k-algebra 
homomorphism whose image contains I. Let cp = xop: C + A@, A/Z. Then 
ker(cp) is a 2-sided ideal if, and only if, image(q) c Id(Z). Zf this is the case 
then cp is an algebra homomorphism into Id(Z)/Z. 

The proof is left to the reader. It is much the same as the proof of (3.1), 
and is in fact simpler. 

5. EQUIVARIANT PROJECTIVE REPRESENTATIONS 

As before we fix an action t : G + Aut,(K) of G on K (over k). We also 
fix, for the duration of this section, a homomorphism U: cr + U, from G to 
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the group of k-linear automorphisms of the K module KG: u, acts on xr 
(xEK,TEG) by 

u,(xr) = o(x)ar. 

This homomorphism is the equivariant regular representation of G (given t). 
In general a (K/k, 6) automorphism of KG is a k-linear automorphism 
cp: KG + KG which satisfies 

&a) = 4x) da), xEK,aEKG. 

The set of such automorphisms will be denoted by Aut,,,(KG). The 
union, over G, of these sets is a group Aut,,( KG). For example, the 
elements U, mentioned above lie in Aut,,,(KG). 

It is clear that Aut, (KG) = Aut,,,,,(KG) is a normal subgroup of 
Aut,(KG). Two of its subgroups are important to us. One is K*, the 
group of invertible elements of K considered as operators on KG (by left 
multiplication). The other is the group of “diagonal” K-linear 
automorphisms of KG, denoted by D Aut, (KG), and defined by saying 
that cp E D Aut, (KG) if relative to the “canonical” basis of KG (i.e., G) its 
matrix is diagonal. It is easily seen that K* is normal (but not central!) in 
Aut,,( KG). The factor groups obtained by dividing out K* will be 
designated by prefixing a P. Thus 

Aut,,,(KG)/K* = PAut,,(KG) 

Aut, (KG)/K* = P Aut, (KG) 

D Aut, (KG)/K* = PD Aut, (KG), etc. 

An equivariant projective representation (EPR for short) is a map 

v: G + Aut,,(KG) 

such that 

G) 40) E AutKlk,a (KG) for every CJ E G, and 
(ii) the composition G 4” Aut,,(KG) + PAutkI,(KG) is a homo- 

morphism. 

It is denoted by r?. 
An equivariant projective representation is called regular if it satisfies, in 

addition to (i) and (ii), 

(iii) v(o)(xr) = a(x) p(a, r)a~ with p(o, r) E K*. 

If v : G + Aut klk (KG) is an equivariant projective representation then 
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since 6 is a homomorphism ~(05) and u(a). u(r) are proportional, with 
factor of proportionality f(a, t) E K* : 

u(a) u(7) =f(a, T) u(m). 

The associativity (o(a) u(r)) u(p) = u(a)(u(~) u(p)) means that f: G x 
G + K* is a cocycle. We call f the “associated cocycle” of u. 

We now come to the important notion of equiualence of equivariant 
projective representations. Two equivariant projective representations 
u, w : G -+ Aut K,k (KG) will be considered equivalent if there is a K-linear 
automorphism cp of KG and elements &E K* such that for every by G, 
ZEKG 

cp(4o)z) = 47w(a)(cp(z)). 

This can be rephrased as follows. P Aut, (KG) acts on P Aut,,(KG) by 
“conjugation.” If cp E Aut, (KG), let @ be its image in P Aut, (KG). To say 
that u is equivalent to w is the same as saying that $ti$ -’ = ti’; i.e., 
q%(b)@-’ = $(a) for all 0 E G. It is easily seen that the relation just defined 
is indeed an equivalence relation. We define an action of G on Aut,,(KG) 
and its subgroup Aut, (KG), also by “conjugation”: If + E Aut,,.(KG) 
and u E G then o$ = U, . I// . u; ‘. It is immediately seen that 
4 E A%qk,aro- L (KG). This action of G on AutK,k (KG) also normalizes 
D Aut, (KG) and K* and thus defines an action of G on P Aut,( KG), 
P Aut, (KG), and PD Aut, (KG). 

If u: G + Aut,,,(KG) us an equivariant projective representation then, 
for each OEG, u(a)u;‘=cp(a)~Aut~(KG). 

(5.1) LEMMA. 4: G--t P Aut, (KG) is a 1-cocycle. 

This simply means that for C, t E G, @(a~) = ~$(a) a(@(~)); we refer the 
reader to 12, Appendix, p. 1231 for general information in non-com- 
mutative cohomology. 

ProojY 

cp(oz)=u(or)u,'=f-'(~, r)u(a)u(7)u,‘u,’ 

=f-'(a,t)cp(c7) u,cp(7)u,u;‘u,’ 

=f -709 7) da) dcp(7)) 

so @(or) = @(c) 44(7)), as required. 
This defines a map from the set of equivariant projective representations 

of G in KG (with fixed action, t, of G on K) into the set 
H’(G, P Aut, (KG)) by u+ [4] EH’(G, P AutK(KG)). If w is an 
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equivariant projective representation equivalent to u, write w(a) = $(a)~,, 
where $(u)E Aut, (KG). Let 1 E Aut, (KG) be an automorphism 
implementing the equivalence D-W. Thus for every u E G 

vP(u)u, = kr$(~) uort (LeK*) 

which implies qcp(a) = &,$(a) u(q) or ij@(u) u(q)-’ =$(a). Thus we see 
that the map u + [@I is constant on equivalence classes. 

Let E,,(G) denote the set of equivalence classes of equivariant projec- 
tive representations of G in KG. We denote the class of u by [u]. The above 
discussion proves that we have defined a map 

d: EKIk(G) -+ H’(G, P Aut, (KG)). 

(5.2) PROPOSITION. The map d is bijectiue. 

ProoJ: We define an inverse to d. Given a class in H’(G, P Aut, (KG)) 
choose a representative cocycle, i.e., a map 8: G + P Aut, (KG). Choose 
cp: G + Aut, (KG) lifting 8, i.e., such that @ = 8. Let u: G + Aut,,(KG) by 
u(u) = cp(u)u,. It is easily seen (since tI is a cocycle) that u is an equivariant 
projective representation. It remains to prove that the correspondence [O] 
goes to [u] just described is well defined and that it is inverse to d. This is 
routine and is left to the reader. 

The short exact sequence of groups with G action 

1 + K* + Aut, (KG) + P Aut, (KG) + 1 

gives rise to a connecting homomorphism 6 : H’(G, P Aut, (KG)) + 
H*(G, K*). How does the map 6 0 d look? It is immediately checked that 
given an equivariant projective representation u : G + Autqk (KG) then 
S(d[u])) is represented by the cocycle f(u, T) which is defined by 
u(u) U(T) =f(u, 7) u(m), f(u, T) E K*. 

(5.3) LEMMA. 6: H’(G, P AutK (KG)) + Z-Z*(G, K*) is onfo. 

Proof Let f: G x G + K* be a 2-cocycle. We exhibit an equivariant 
projective representation 0 such that S(d([u]))= [f]. Define 
u: G + Aut, (KG) by u(u)(C~ a,r) = 1, u(a,) f(u, r)ur. This is easily 
seen to be a regular equivariant projective representation satisfying the 
requirements. 

There is an abelian subgroup of P Aut, (KG), PD Aut, (KG), which we 
defined above. The inclusion PD Aut, (KG) 4 P Aut, (KG) induces a map 
in cohomology 

e: H’(G, PD Aut, (KG)) + H’(G, P Aut, (KG)) 
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and the short exact sequence 

1 + K* + D Aut, (KG) + PD Aut, (KG) --) 1 (*) 

induces a connecting homomorphism (since PD Aut, (KG) is abelian) 

b, : H’(G, PD Aut, (KG)) + H’(G, K*). 

Clearly the diagram 

H’(G, PD Aut, (KG)), 

P 

H’(G, P A:t, (KG))’ 

commutes (this follows from the definition of connecting maps). 

(5.4) PROPOSITION. 6, is an isomorphism. 

COROLLARY. e is injecrive. 

Note also that the proposition gives another proof for (5.3). 
The proposition will follow from an application of “Shapiro’s lemma” 

which we now recall. If M is a G module let M, be M as an abelian group 
but with a trivial G-action. Let Coind(M) = Hom,(ZG, M) with diagonal 
action of G; i.e., if h: G + M and 0, z E G then (ah)(r) = a(h(a-‘r)). 

(5.5) LEMMA. Coind(M) is cohomologicafly trivial, i.e., H’(G, Coind(M)) 
=0 for i>O. 

Proof: This is well known for MO (see [2, p. 112]), so it suffices to 
prove that Coind(M) zCoind(M,) as G-modules. The isomorphism is 
similar to the isomorphism described in [2] (see the remark on p. 118): 
if h: G+ A4 let h,: G+M, be defined by h,(o)=o-‘h(o) (the latter 
considered in MO). This proves the lemma. 

(5.6) LEMMA. D Aut, (KG) z Map(G, K*) 2 Hom,(ZG, K*). 

Here, too, G acts on Map(G, K*) diagonally as above. 

Proof: The second isomorphism is easy and given by restriction. To 
prove the first isomorphism let p be a K-linear “diagonal” automorphism of 
KG. Then p(r) =a(~)r with ME K *. To p we correspond the map 
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h,: r + a(t). It is clearly bijective, and we must show that haCp) = o(h,). 
Now n(p)=UaOpw;l so h,,,,(r) = a(a(e-‘r)) and a(h,)(r) = 
c(h,(a-‘r)) = o(a(a-‘r)), as required. 

Proof of (5.4). According to (5.5) and (5.6), D Aut, (KG) is 
cohomologically trivial. Thus the long cohomology exact sequence of (*) 
says that for i > 0 the connecting homomorphisms 

H’(G, PD Aut, (KG)) + H’+‘(G, K*) 

are isomorphisms. The case i = 1 is (5.4). 

We wish, finally, to explain what the elements of H’(G, PD Aut, (KG)) 
look like when considered as elements of E&G) (which is identified with 
H’(G, P Aut,,(KG)) via d). Recall that we defined above the notion of a 
regular equivariant projective representation u to be one that is diagonal 
relative to the canonical basis of KG, which is G. If, say, o(a)r = p(o, r)(n) 
it does not follow that p is a 2-cocycle. If p is the 2-cocycle corresponding 
to u, i.e., such that u(a) u(r)= p(o, r) u(ar) for all 0, TEG, then we call u 
standard. Of course to every regular representation corresponds a standard 
representation in an obvious way. 

(5.7) LEMMA. A regular equiuariant projective representation and its 
corresponding standard equiuariant projectiue representation are equivalent. 

Proof. Let u: G + Aut,,(KG) be the regular equivariant projective 
representation, so that u(c)t = p(a, r)o~ and let f: G x G -+ K* be the 
cocycle associated with u, so that 

u(a) u(t) = f(a, 7) u(m). 

The corresponding standard equivariant projective representation is the 
map w:G+AutKIk(KG) defined by w(a)(xr)=a(x)f(o,r)or (xEK; 
c, r E G). Equivalence of u and w is given by a K-linear automorphism cp of 
KG satisfying cp(u(cr)z) = I, w(a) q(z) for some J., E K*. If we try to define a 
diagonal such automorphism p(t) = c,z with C,E K* we see that the 
“constant” c, must satisfy (taking z = 1 E KG) 

P(% l)cC=Lclf(~, 1). 

Thus we may try if the choice c, = f(a, l)/p(a, 1) does the job. Note that 
f (1, 1) = p( 1, 1) will follow from the computation below so that ci = 1. We 
need to check if 

cp(4~)r)=rp(p(a, Tbt)= p(a, t)f(m 1) P(OT, l)-‘aT 
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(where 0, z E G) is equal to 

Thus we need to compare f(a~, 1) p(a, T) p(ar, l)-’ with f(o, t) a(f(r, 1)) 
a(p(~, 1)-l). Collecting fs and p’s together we ask if the equality 

holds. As f is a cocycle we see that the relation df (c, z, 1) = 1 implies that 
the left hand side equals f(a, T). Now the associativity u(o)(u(r)l)= 
(u(6) u(T))( 1) implies exactly 

4P(G l))p(o,t)=f(a,r)p(crz, 1) 

which is the required equality. 

Now if f: G x G + K* is a 2-cocycle, it is easy to see that if u is the 
standard equivariant projective representation associated with f (i.e., 
U(Q)T= f(a, ~)a?) the image of [u] under 6odis [f]. Combined with (5.7) 
we get 

(5.8) PROPOSITION. d-‘H’(G, PD Aut, (KG)) is the set of equivalence 

classes of regular equiuariant projective representations. 
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