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Abstract

1 Abstract

We study a 3D bicrystal containing an axially symmetric shrinking grain which is
initially a spherical segment attached along a circular groove root to the flat exterior
surface of the second grain. Following Mullins [1]-[3], a time dependent problem is
formulated for the coupled motion of the grain boundary, the groove root, and the
external surface. Numerical solutions calculated using an implicit finite difference
scheme indicate that the grain shrinks and disappears in finite time, no non-trivial
limiting motion is seen, and there is no pinning of the grain boundary that might be
associated with so called ”jerky motion.” Surprisingly enough, the surface groove
seems to only minimally affect the grain boundary motion, the groove depth varies
non-monotonely in time, and after annihilation of the grain, the exterior surface has
a profile which depends on the system’s history and contains certain features which
can be interpreted as so called ”ghost lines.”
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2 Introduction

The influence of the exterior crystal surface on grain growth dynamics has been
discussed extensively since the middle of the last century. Mullins [3] proposed
that groove roots could serve as anchors for moving grain boundaries and
could give rise to non-monotone or ”jerky” motion of the grain boundaries.
Mullins’ conjecture gave rise to considerable interest in the investigation of
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coupled surface and interface motion. Although many experiments have been
done in this direction, we do not know of any experimental paper which shows
explicitly the phenomenon of ”jerky” motion in a one component system.
The recent investigation [4] showed that under typical conditions, the surface
groove in Al minimally affects grain boundary motion. In [5] it was shown
theoretically that in the quarter loop geometry, the grain groove has very
little effect on the kinetics of grain boundary migration for typical values of the
parameters, but that it may even accelerate migration in very special cases. In
none of the theoretical papers that considered coupled grain boundary surface
groove motion in two dimensional geometries such the quarter loop and Sun-
Bauer geometries [5] - [11] was any trend to non-monotone motion seen. 1

Nevertheless, it is known that the exterior crystal surface can sometimes
strongly influence the motion of the interface. For example, grain boundary
migration driven by anisotropy of the exterior surface has been reported in
[3,14,15]. In the last of these three papers, it is shown that an increase of the
driving force in such systems can induce a decrease in the velocity of the grain
boundary. Another example of surface driven grain boundary migration is pre-
sented in [16] where grain growth in a one dimensional polycrystalline array
occurs via interaction of the surface grooves. Strong influence of the external
surface on the interfacial motion is shown in [17] where the presence of a grain
groove gives rise to a second velocity of steady motion.

The short review given above shows that the problem of coupled surface-
interface motion is intriguing, and whether or not jerky motion can occur
in one-component systems still remains an open question. Note that all of
the literature which has been cited deals with special geometries where the
systems being described have a uniform cross-section and are hence effectively
two dimensional, and this simplifies the analysis considerably. In the present
paper we consider a 3D axisymmetric geometry. This geometry, while still
simple, is closer than the uniform cross-sectional systems to modelling true
3D motion. Therefore it is not surprising that new effects are seen here which
probably give some hint as to what can be seen in arbitrary 3D geometries.

Typical experimental data for grain boundary migration usually contains in-
formation about the speed or the position of the groove root as a function
of time, and nothing about the nature of the grain boundary’s shape which
determines the driving force of the process. In some special cases, such as the
”quarter loop” or the ”Sun-Bauer” geometry, the shape of the grain bound-
ary can be calculated analytically. However in these cases no interesting non-
monotone behavior was observed in one component systems. Hence it seems
interesting to investigate numerically the behavior of a system in the context

1 Some theoretical results in this direction have been reported [12,13], but they can
be dismissed rather easily.
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Fig. 1. A schematic cross-section of the bicrystal.

of a somewhat non-traditional configuration. We focus here on a system in
which the initial grain is of the form of part of a sphere. This is a very ide-
alized case, and probably difficult if not impossible to realize in experiment.
However, as we shall see, this system exhibits rather complicated dynamics
and should help in extending our understanding of the external surface - grain
boundary interaction in general. Our numerical analysis indicates that the
evolution of the system is dominated by transients that lead to rather com-
plicated surface morphology even in the isotropic case. The driving force for
the evolution of the system is the reduction of surface and grain boundary
energies. We have calculated both the grain boundary and exterior surface en-
ergies as a function of time, and found that the grain boundary energy seems
effectively uninfluenced by its interaction with the surface via the groove root
and varies much as it would for a freely moving grain boundary. The energy
of the external surface corresponds initially to that of a flat external surface,
then increases, reaching some maximal value just prior to the vanishing of the
grain and its grain boundary, and then decays, with relaxation continuing af-
ter the disappearance of the grain. We note that initially, for typical values of
the system parameters, the grain boundary energy in a bicrystalline geometry
is an order of magnitude larger than the external surface energy. When the
grain has shrunken and become very small, the two energies are of the same
order of magnitude. But the smallness of the grain implies that its curvature is
very large, and so the grain can be expected to continue to shrink very rapidly
due to its high curvature, and no pinning or related instability is thus to be
expected to occur in a one component isotropic system.
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3 The Equations for Coupled Surface and Grain Boundary Motion
in an Axisymmetric Geometry

Surface diffusion and motion by mean curvature

For our initial conditions, we shall consider a bicrystal in which one grain
which constitutes a segment of a sphere is embedded within a second grain of
infinite extent. More specifically, the external surface shall be assumed to be
initially flat and the grain boundary will be taken to be initially in the form
of a spherical segment which can be described in terms of an angle, απ, and
an initial radius, R0, see Fig. 1. Since the bicrystal is in a geometry in which
the exterior surface and the grain boundary are initially axially symmetric,
we shall look for axially symmetric solutions which, when described in terms
of the cylindrical coordinate system, will be independent of the polar angle
variable, Ψ, see Fig. 1. Thus, the evolution of our system can be described in
terms of the variables h(r, t), u(r, t), and R(t), where h(r, t) and u(r, t) denote
respectively the heights of the exterior surface and of the grain relative to the
height of the exterior surface at ±∞ where it shall be assumed to remain flat,
and R(t) denotes the radius of the circular groove as a function of t.

Taking the motion of the exterior surface to be governed by surface diffusion:

Vn = B4sµ, µ = −κ,

where Vn is the normal velocity, 4s is the surface Laplacian, κ is twice the
mean curvature, µ denotes the chemical potential, and B is constant, and
taking the motion of the grain boundary to be governed by motion by mean
curvature:

Vn = Aκ,

where Vn denotes the normal to the surface, κ denotes twice the mean cur-
vature, and A is constant, for both surfaces it is necessary to calculate the
mean curvature. Because of the axial symmetry of the system, the principal
directions to the exterior surface and the grain boundary are given by a) the
tangent to the surface which points in a constant azimuthal direction, and b)
the tangent to the surface which points in a direction of constant r. Thus the
principal curvatures for the exterior surface are given by a) hrr(1 + h2

r)
−3/2

and b) (hr/r)(1 + h2
r)
−1/2, and therefore

κ =
hrr

(1 + h2
r)

3/2
+

hr

r
√

1 + h2
r

=
1

r


 rhr√

1 + h2
r




r

.

Since the mean curvature depends only on r, 4sµ = µss, where ∂s = (1 +
h2

r)
−1/2∂r. Noting that the normal velocity along the exterior surface may be
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expressed as Vn = ht(1+h2
r)
−1/2, it follows from the discussion above that the

equation of motion for the exterior surface may be written as

ht = B


 µr√

1 + h2
r




r

. (1)

From the equation for motion by mean curvature and the discussion above, it
follows readily that

ut = A


ur

r
+

urr

1 + (ur)2


. (2)

If, however, the parameter α (see Fig. 1) is less then one, then the grain
boundary shape u(r, t), at least initially and at early times, is not single valued.
To sidestep this difficulty, instead of expressing the equation of grain boundary
motion in radial coordinates, we introduce polar coordinates (ρ, ϕ), and the
origin of the polar coordinate system is taken to coincide with the origin
of the radial coordinate system, see Fig. 1. In terms of this new coordinate
system, we may set u(r, t) = ρ(ϕ, t) sin ϕ, where r = ρ(ϕ, t) cos ϕ and −π/2 ≤
ϕ ≤ φ(t), where ϕ = φ(t) demarcates the location of the groove root. In
the problem formulation which follows shortly, the equation of motion for the
grain boundary will be given explicitly in terms of ρ = ρ(ϕ, t), ϕ, and φ(t).

The problem formulation

To complete the problem formulation, boundary conditions must be pre-
scribed. The basic physical laws governing the boundary conditions at the
tri-junction line which occurs along the groove root were understood and ex-
plained by Mullins in [3], although presented there only in a linearized form.
Following the discussions in [3,5,9], we take the tri-junction line to be gov-
erned by Young’s law [18,2] which expresses a balance of mechanical forces,
continuity of the chemical potential, and balance of mass flux. In terms of the
notation introduced above, these conditions are to be imposed at r = R(t)
and at ϕ = φ(t). As mentioned previously, the external surface h will be taken
to be asymptotically flat. This far field condition reflects the assumption that
sufficiently far away from the grain groove, the effect of the grain boundary
on the overall height of the specimen is negligible. Additional boundary con-
ditions are needed along the axis of symmetry where r = 0 and ϕ = −π/2, to
reflect the assumed symmetry of the system. In summary, we may write our
problem formation as
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ht = B
[

µr√
1+h2

r

]

r
, µ = −1

r

[
rhr√
1+h2

r

]

r
, 0 < r < ∞, r 6= R(t), t > 0,

ρρt = A
[
−2−

(
ρϕ

ρ

)
tan ϕ +

(
ρρϕϕ−ρ2

ϕ

ρ2+ρ2
ϕ

)]
, −π

2
< ϕ < φ(t), t > 0,

φ(t) = arctan[h(R(t), t)/R(t)], t > 0,

ρ(φ(t), t) =
√

h2(R(t), t) + R2(t), t > 0,

h(R(t) + 0, t) = h(R(t)− 0, t) = ρ(φ(t), t) sin φ(t), t > 0,

hr(0, t) = 0, t > 0,

µr(0, t) = 0, t > 0,

ρϕ(−π
2
, t) = 0, t > 0,

arctan hr(R(t) + 0, t)− arctan hr(R(t)− 0, t) = 2 arcsin(m/2), t > 0,

arctan hr(R(t) + 0, t) + arctan hr(R(t)− 0, t) = π + 2 arctan Υ(t),

where Υ(t) =
[

ρϕ(φ(t),t) tan φ(t)+ρ(φ(t),t)
ρϕ(φ(t),t)−ρ(φ(t),t) tan φ(t)

]
, t > 0,

µ(R(t) + 0, t) = µ(R(t)− 0, t), t > 0,

µr√
1+h2

r

|r=R(t)−0 = µr√
1+h2

r

|r=R(t)+0, t > 0,

h(∞, t) = 0, t > 0,

hr(∞, t) = 0, t > 0.

The first and second equations describe respectively the motion by surface
diffusion of the exterior surface and the motion by mean curvature of the grain
boundary. Note that we are working here with a full nonlinear formulation
and not with the small slope linearized approximation which has traditionally
been employed. The third, fourth, and fifth equations describe the geometric
conditions which must hold at the groove root if the basic configuration in
which the grain boundary is attached to the exterior surface at the groove
root is to persist over time. The next three equations constitute conditions at
the origin reflecting the assumed axial symmetry. The next four conditions,
conditions nine though twelve, give the physical boundary conditions which
have been assumed to hold at the groove root; the first two of these conditions
express Young’s law at the triple junction line, and the latter two of these
conditions express continuity of the chemical potential and a balance of mass
flux. In Young’s law, m = γgrain boundary/γexterior surface is the ratio of the
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external surface to grain boundary energies. The last two equations reflect the
assumption that the exterior surface is asymptotically flat far away from the
embedded grain.

Further insight into this system can be gained by considering [11] where the
governing equations are given in terms of coordinate free geometric quantities.
We note that closely related systems have also recently been obtained in a
sharp interface limit from a system of Allen-Cahn/Cahn-Hilliard equations
[19] and from a phase field model for electromigration of intergranular voids
[20].

3.1 Parameters

Problem (P) contains 3 physical parameters and 2 geometric parameters which
reflect the initial conditions. The physical parameters are A, the kinetic coef-
ficient in the equation for grain boundary motion, B, the mobility coefficient
in the equation for surface evolution, and m, the ratio of the external sur-
face to grain boundary energies which appears in Young’s law. Note that
[A] = cm2/ sec, [B] = cm4/ sec, and [m] = 1. The geometric parameters con-
sist of α, which prescribes the proportion of the sphere determining the initial
grain shape, and R0, the initial radius of the grain, see Fig. 1. Note that [α] = 1
and [R0] = cm.

The parameters, A and B may be used in defining L =
√

B/A as a unit of

length, and θ = B/A2 as a unit of time. Since typically B ' 10−20 cm4/ sec
and A ' 10−6 − 10−12 cm2/ sec, it follows that typically L ' 10−6 − 10−4cm
and θ ' 10−8 − 104 sec . Setting t → t/θ and r → r/L, and subsequently
h(r, t) → h(r, t)/L, ρ(ϕ, t) → ρ(ϕ, t)/L, R(t) → R(t)/L, and R0 → R0/L,
a dimensionless formulation of Problem (P) is obtained. The dimensionless
formulation, which for simplicity we shall not write out explicitly, can be
written out in terms of three dimensionless parameters: α, R0, and m.

4 The Numerical Procedure

Suppose that the solution is known up to time t for some t > 0, and sup-
pose that we use the past values of R(t) to approximate R(t +4t), for some
fixed 4t > 0. Taking R(t + 4t) to now be known, we can use the equa-
tions in Problem (P) to approximate h(r, t +4t) and then u(r, t +4t). This
can be accomplished by first solving a ”surface problem” for h(r, t + 4t)
using finite differences based on the equations for surface diffusion and the
boundary conditions in (P) which dependent on h and µ only. Having approx-
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imated h(r, t +4t), an approximation for the value of u(R(t +4t), t +4t)
or equivalently φ(t +4t), ρ(φ(t +4t), t) is implied by the persistence bound-
ary condition. The values of φ(t +4t), ρ(φ(t +4t), t), the boundary condi-
tion ρr(0, t +4t) = 0, and the equation for grain boundary motion together
constitute a ”grain boundary problem” whose solution by a finite difference
scheme gives an estimate of u(r, t + 4t). By now, all of the equations and
boundary conditions in Problem (P) have been used, except for the second
boundary condition from Young’s law which connects hr(R(t +4t), t +4t)
with ρ(φ(t +4t)) and ρϕ(φ(t +4t), t +4t). This last condition can be used
to correct our initial approximation of R(t+4t). The process can be iterated
until sufficient accuracy is achieved. Implicit finite difference schemes are used
at each step to solve the ”surface” and ”grain boundary” problems.

We remark that while the initial conditions have been taken in accordance
with the geometry prescribed by Fig. 1 and described above, Young’s law has
been imposed at the groove root on the finest finite difference scale for the
sake of compatibility.

5 Numerical Results

Solutions were calculated for several sets of initial data and parameter values.
The initial data is determined here by the initial shape of the grain, which
is taken as a spherical segment which can be prescribed by an angle, απ,
and a (non-dimensional) radius, R0. See Fig. 1. Note that if α = 0, then
initially the embedded grain is a sphere, and if α = 1, then initially it is a
hemisphere. We have investigated initial data with α = 0.1, 0.4, 1, and R0 =
102, 103, 5 × 103, 104. The only additional parameter which needs to be fixed
is m, which we have taken as m = 0.1, 0.3, 0.5, 1. For all tested values of
the parameters, the behavior of solutions was seen to be relatively similar
except that when α < 1, the groove root motion was non-monotone and
changed directions as the grain shrank. The typical features of the dynamics
are summarized below.

The case α = 1 in which the initial shape is hemispherical constitutes a special
case in which the grain boundary meets the exterior surface at 90◦, and if
m = 0 the exterior surface will remain flat, no groove root will form, and
the grain will remain hemispherical as it shrinks. In this case, its radius can

easily be shown to be given by R(t) =
√

R2(0)− 4t. This special case can be
used as a basis for comparison for other solutions in order to see the degree
to which the grain boundary motion is effected by the groove root and the
exterior surface. Such a comparison is given with α = 1 for R0 = 100, 10000,
and m = 0.3, 1, in Fig. 2 where the data are presented in rescaled coordinates.
It can be seen that the overall motion of grain boundary seems only slightly
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Fig. 3. a) The shape of the exterior surface at various times. b) The dependence of
the groove depth as a function of time. Here α = 1, R0 = 100, and m = 0.3.

affected by the interaction with the exterior surface for m < 0.3.

The central cross-section of the exterior surface at different times and the
groove root depth as a function of time are presented for this simulation in
Fig. 3a and Fig. 3b, respectively. It can be seen here that the groove root moves
continuously towards the origin (see Fig. 2) and that the groove root depth
has a minima in time. The exterior surface profile seems to ”remember some
history” in that a small indentation or valley forms in the exterior surface at
around r = 80 which persists up to and past the time that the grain disappears.
This indentation appears to form about when t ≈ 500, just after the groove
root has crossed this position. At this time, the groove depth can be seen to
have a minimum, see Fig. 2. Even though such a feature can be explained
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Fig. 4. a) The central cross-section of the initial grain. b) The groove root’s position
as a function of time. Here α = 0.1, R0 = 5× 103, and m = 0.1.

as simply a transient of the evolution, it could also be easily interpreted as
a ”ghost line” from which a grain boundary had detached. No ”pinning”, or
delay in the groove root displacement was observed, see Fig. 2.

In a simulation in which α = 0.1, R0 = 5 × 103, and m = 0.1, the groove
root was seen to change its direction of motion as it progressed, see Fig. 4.
Moreover, the dependence of the groove depth on time is more complicated;
there are two local minima which occurred when t ≈ 2× 106 and t ≈ 4× 106,
as well as a local maximum which occurred when t ≈ 3.2 × 106, see Fig. 5.
The data in Fig. 4b indicates that these maxima and minima occurred when
the groove root was already moving steadily towards the origin, and that they
appear at a distance ≈ 2500 < r <≈ 3000 from the origin, which corresponds
to the region in which the ”ghost line” valley appears at later times during
the grain evolution, see Fig. 6. Qualitatively the same dynamics were observed
when α = 0.4 and for all of investigated sets of parameters.

The formation of a residual ”valley” ( ”smooth groove” or ”ghost line” ) can
be explained as follows. Since m has been assumed to be small, the evolution
of the exterior surface should be governed primarily by surface diffusion and
should only be weakly affected by the motion of the grain boundary. Hence
features along the exterior surface with a characteristic width of 4r can be
expected to relax at a rate proportionate to (4r)4. Noting that, for example, in
Fig. 6, the valley at r = 3000 has a characteristic width of 4r ≈ 1000 and the
peak at r = 500 has a characteristic width of 4r ≈ 100, their relaxation times
should be proportional to 1012 and to 108 respectively. Therefore the valley
should persist long after the peak, and thus also the grain, have disappeared.
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5.1 Energetics

We turn now to see what our equations imply in terms of energy. The energy
here has two components, the energy of the exterior surface and the energy of
the grain boundary, and it is easy to show as in [19] that the overall reduction
in energy acts as the driving force for the system. We remark that the energy
of the external surface, γsurface Ssurface, should be infinite, since Ssurface is
infinite as long as γsurface 6= 0, the shrinking grain is finite, and the system
extends out to infinity. However, we can express the energy of the exterior
surface in terms of its energy relative to a flat exterior surface of infinite
extent

Esurface = γsurface 4Ssurface,

where 4Ssurface represents the reduced surface area, 4Ssurface := Ssurface−
Sflat surface, and Esurface, so defined, can be expected to be finite. Note in
particular that Esurface = 0 for a flat surface. Setting Egrain boundary =

γgrain boundary Sgrain boundary, the total (relative) energy of the system may
be expressed as

Etotal = Esurface + Egrain boundary.

Since only the ratio m = γgrain boundary/γexterior surface appears in our prob-
lem formulation, it is convenient to work with the rescaled energy

etotal = Etotal/γsurface = 4Ssurface + mSgrain boundary.

In terms of this definition for the system’s energy, initially the value of the en-
ergy is given by the energy of the grain boundary alone since we are supposing
that the exterior surface is flat at time t = 0, and eventually, when the grain
has disappeared and the exterior surface has become flat once more, the total
energy of the system should vanish. Graphs of the surface and grain boundary
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Fig. 6. The central cross-section of the exterior surface at time t = 8.3× 106. Here
α = 0.1, R0 = 5× 103, and m = 0.1.

energies during a simulation with α = 0.1, R0 = 5 × 103, and m = 0.1 are
presented in Fig. 7.

At t = 0, the exterior surface is flat and its energy is zero, while the energy
of the grain boundary appears to be maximal. The groove root starts to grow
immediately, which causes the surface energy to increase at the expense of
the grain boundary energy, see Fig. 7a. Nevertheless, the surface energy is so
small relative to the (initial) grain boundary energy that very little deviation
from the linear decrease which would be predicted for a freely moving hemi-
spherical grain boundary can be seen in the surface energy graph (Fig. 7b).
After time t ≈ 2× 106, the groove root begins to accelerate (see Fig. 4b), and
the surface energy starts to decrease. The surface energy continues to decrease
up to the time at which the grain disappears. The energy of the exterior sur-
face should continue to decrease also after the grain has disappeared, but for
computational simplicity our simulations have been stopped when the grain
disappears. Note that the graph of the grain boundary energy (Fig. 7b) is
nearly a straight line.

6 Conclusion

The results which have been presented show that transient dynamics of cou-
pled grain boundary migration and surface diffusion can give rise to rather
complicated morphology of the external surface which can include the ap-
pearance of ”ghost lines,” although no pinning of grain boundary is involved
in their formation. Roughly one can say that at the beginning of process, the
groove depth grows for some rather short period of time until some maxi-
mal value is attained which is so large that surface diffusion cannot flatten it
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Fig. 7. a) The surface energy as a function of time. b) The surface and grain bound-
ary energies as functions of time. They have different orders of magnitude, and it
is impossible to see any variation of the surface energy on the scale of the grain
boundary energy. Here α = 0.1, R0 = 5× 103, and m = 0.1.

out during the lifetime of the grain. One can see the imprint of this maximal
groove in the surface profile even after grain annihilation. This behavior is also
reflected in the evolution of the energetics of the system.

It would seem that the generation of ghost lines in real polycrystalline ma-
terials could have similar origins. In geometries where long time asymptotic
solutions exist, such phenomenon cannot be expected to appear at very long
times, since complete relaxation of even a deep surface groove requires only
a finite amount of time. However one should expect such ”ghost lines” in
polycrystals where the groove roots spend a lot of time with very little dis-
placement, since in this case the groove depth would be large and the exterior
surface can be expected to continue to relax for a long time even after grain
annihilation.
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