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Abstract

The optimal mass transportation was introduced by Monge some 200 years ago and
is, today, the source of large number of results in analysis, geometry and convexity.
Here I investigate a new, surprising link between optimal transformations obtained by
different Lagrangian actions on Riemannian manifolds. As a special case, for any pair of
non-negative measures λ+, λ− of equal mass

W1(λ−, λ+) = lim
ε→0

ε−1 inf
µ

Wp(µ + ελ−, µ + ελ+)

where Wp, p ≥ 1 is the Wasserstein distance and the infimum is over the set of probability
measures in the ambient space.

1 Introduction

The Wasserstein metric Wp (∞ > p ≥ 1) is a useful distance on the set of positive Borel
measures on metric spaces. Given a metric space (M, D) and a pair of positive Borel measures
λ± on M satisfying

∫
M dλ+ =

∫
M dλ−:

Wp(λ+, λ−) := inf
π

{[∫

M

∫

M
Dp(x, y)dπ(x, y)

]1/p

; π ∈ P(λ+, λ−)

}
, (1.1)

where P(λ+, λ−) stands for the set of all positive Borel measures on M×M whose M−marginals
are λ+, λ−.

Under fairly general conditions (e.g if M is compact), a minimizer π0 ∈ P(λ+, λ−) of
(1.1) exists. Such minimizers are called optimal plans. I’ll assume in this paper that M is
a compact Riemannian manifold and D is a metric related (but not necessarily identical) to
the geodesic distance.

If in addition λ+ satisfies certain regularity conditions, the optimal measure π0 is sup-
ported on a graph of a Borel mapping Ψ : M → M . By some abuse of notation we call a
Borel map Ψ an optimal plan if it is a minimizer of

Wp(λ+, λ−) = inf
Φ

{[∫
Dp(x, Φ(x))dλ+

]1/p

; Φ#λ+ = λ−
}

(see Section 1.2-4 for notation).
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The metric Wp, p ≥ 1 is a metrization of the weak topology C∗(M) on positive Borel
measures. In particular, it is continuous in the weak topology. Thus, it is possible to approx-
imate Wp(λ+, λ−) (and the corresponding optimal plan) by Wp(λ+

N , λ−N ) on the set of atomic
measures

λ±N ∈M+,N :=

{
µ =

N∑

i=1

miδ(xi) ,mi ≥ 0, xi ∈ M

}
, N →∞ (1.2)

reducing (1.1) into a finite-dimensional linear programming on the set of non-negative N ×N
matrices {Pi,j} subjected to linear constraints.

There is, however, a sharp distinction between the case p > 1 and p = 1. If p > 1 then
the optimal plan π0 is unique (for regular λ+). This is, in general, not the case for p = 1.
Another distinctive feature of the case p = 1 is its ”pinning property”: The distance W1

depends only on the difference λ := λ+ − λ−. This is manifested by the alternative, dual
formulation of W1:

W1(λ) = sup
φ

{∫
φdλ ; ‖φ‖Lip ≤ 1

}
(1.3)

where ‖φ‖Lip := supx 6=y∈M (φ(x)− φ(y)) /D(x, y).
The optimal potential φ yields some partial information on the optimal plan Ψ (if exists).
In particular, ∇φ(x), whenever exists, only indicates the direction of the optimal plan. For
example, if the metric D is Euclidean, then Ψ(x) = x + t(x)∇φ(x) for some unknown t(x) ∈
R+. This is in contrast to the case p > 1 where a dual variational formulation, analogous to
(1.3), yields the complete information on the optimal plan Ψ in terms of the gradient of some
potential φ.

In this paper I consider an object called the p−Wasserstein distance (p > 1) of λ+ to λ−,
conditioned on a probability measure µ:

W (p)(λ‖µ) := sup
φ

{∫
φdλ ;

∫
|∇φ|qdµ ≤ 1

}
(1.4)

where q = p/(p− 1).
The first result is

W1(λ) = min
µ

{
W (p)(λ‖µ) ;

∫
dµ = 1

}
, (p > 1) (1.5)

The problem associated with (1.5) is related to shape optimization, see [7]. In addition, the
minimizer µ in (1.5) and the corresponding maximizer φ in (1.4) or (1.3) play an important
rule in the L1 theory of transport [12]. In fact, the optimal φ is, in general, a Lipschitz
function which is differentiable µ a.e. and satisfies |∇φ| = 1 µ a.e. The minimal measure µ is
called a transport measure. It verifies the weak form of the continuity equation which, under
the current notation, takes the form

∇ · (µ∇φ) =
λ

W1(λ)
.
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The transport measure yields an additional information on the optimal plan Ψ along the
transport rays which completes the information included in ∇φ [12]. In the context of shape
optimization it is related to the optimal distribution of conducting material [7]. See also [19],
[23], [24].

The evaluation of the transport measure µ is therefore an important object of study. It is
tempting to approximate the transport measure as a minimizer of (1.5) on a restricted finite
space, e.g. for µ ∈M+,N as defined in (1.2).

However, this cannot be done. Unlike Wp, W (p)(λ‖µ) is not continuous in the weak
topology of C∗ on Borel measures with respect to both µ and λ. Indeed, it follows easily that
W (p)(λ‖µ) = ∞ for any atomic measure µ.

The second result of this paper is

W (p)(λ‖µ) = lim
n→∞nWp(µ + λ+/n, µ + λ−/n) (1.6)

Here the limit is in the sense of Γ convergence. A somewhat stronger result is obtained if we
take the infimum over all probability measures µ:

W1(λ) = lim
n→∞nmin

µ
Wp(µ + λ+/n, µ + λ−/n) (1.7)

where the convergence is, this time, pointwise in λ.
The importance of (1.6, 1.7) is that W (p)(λ‖µ) can now be approximated by a weakly

continuous function

W (p)
n (λ+, λ−‖µ) := nWp(µ + λ+/n, µ + λ−/n) .

Suppose µ0 is a unique minimizer of (1.5). If µn is a minimizer of W
(p)
n (λ+, λ−‖µ) then the

sequence {µn} must converge to the transport measure µ0. In contrast to W (p), W
(p)
n is

continuous in the C∗ topology with respect to µ. Hence µn can be approximated by atomic
measures µN

n ∈ M+,N (1.2). In particular a transport measure can be approximated by a
finite points allocation obtained by minimizing W

(p)
n on M+,N for a sufficiently large n and

N .
The results (1.5- 1.7) can be extended to the case where the cost Dp on M ×M is gener-

alized into an action function on a Riemannian manifold M ×M , induced by a Lagrangian
function l : TM → R. This point of view reveals some relations with the Weak KAM Theory
dealing with invariant measures of Lagrangian flows on manifolds.

1.1 Overview

Section 2 review the necessary background for the Weak KAM and its relation to optimal
transport. Section 3 state the main results (Theorems 1-4), which correspond to (1.5- 1.7)
for homogeneous Lagrangian on M × M . Section 4 presents the proof of the first of the
main results which generalizes (1.4). Finally, Section 5 contains the proofs of the other main
results which generalize (1.6, 1.7).
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1.2 Standing notations and assumptions

1. (M, g) is a compact, Riemannian Manifold and D : M × M → R+ is the geodesic
distance.

2. TM (res. T ∗M) the tangent (res. cotangent) bundle of M . The duality between
v ∈ TxM and p ∈ T ∗xM is denoted by 〈ξ, v〉 ∈ R. The projection Π : TM → M is the
trivialization Π(x, v) = x. Likewise Π∗ : T ∗M → M is the trivialization Π∗(x, ξ) = x.

3. For any topological space X, M(X) is the set of Borel measures on X, M0(X) ⊂M(X)
the set of such measures which are perpendicular to the constants. M+(X) ⊂ M(X)
the set of all non-negative measures inM, andM+

1 (X) ⊂M+(X) the set of normalized
(probability) measures. If X = M , the parameter X is usually omitted.

4. A Borel map Φ : X1 → X2 induces a mapping Φ# : M+(X1) →M+(X2) via

Φ#(µ1)(A) = µ1(Φ−1(A))

for any Borel set A ⊂ X2.

5. For any x, y ∈ M let KT
x,y be the set of all absolutely continuous paths z : [0, T ] → M

connecting x to y, that is, z(0) = x, z(T ) = y.

6. Given µ1, µ2 ∈M+, the set P(µ1, µ2) is defined as all the measures Λ ∈M+(M ×M)
such that π1,#Λ = µ1 and π2,#Λ = µ2, where πi : M×M→M defined by π1(x, y) = x,
π2(x, y) = y.

7. An hamiltonian function h ∈ C2(T ∗M ;R) is assumed to be strictly convex and super-
linear in ξ on the fibers T ∗xM , uniformly in x ∈ M , that is

h(x, ξ) ≥ −C + ĥ(ξ) where lim
‖ξ‖→∞

ĥ(ξ)/‖ξ‖ = ∞ .

The Lagrangian l : TM → R is obtained by Legendre duality

l(x, v) = sup
ξ∈T ∗x M

〈ξ, v〉 − h(x, ξ)

satisfies l ∈ C2(TM ;R), and is super linear on the fibers of TxM uniformly in x.

8. Exp(l) : TM ×R→ M is the flow due to the Lagrangian l on M , corresponding to the
Euler-Lagrange equation

d

dt
lv = lx .

For each t ∈ R, Exp
(t)
(l) : TM → M is the exponential map at time t.
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2 Background

The weak version of Mather’s theory [20] deals with minimal invariant measures of La-
grangians, and the corresponding Hamiltonians defined on a manifold M . In this theory
the concept of an orbit z = z(t) : R→ M is replaced by that of a closed probability measure
on TM :

Mc
0 :=

{
ν ∈M+

1 (TM) ;
∫

TM
l(x, v)dν(x, v) < ∞ ,

∫

TM
〈dφ, v〉dν = 0 for any φ ∈ C1(M)

}
.

(2.1)
A minimal (or Mather) measure νM ∈Mc

0 is a minimizer of

inf
ν∈Mc

0

∫

TM
l(x, v)dν(x, v) := −E (2.2)

It can be shown ([2], [18], [3]) that any minimizer of (2.2) is invariant under the flow induced
by the Euler-Lagrange equation on TM :

d

dt
∇ẋl(x, ẋ) = ∇xl(x, ẋ) . (2.3)

There is also a dual formulation of (2.2) [17], [29]:

sup
µ∈M+

1

inf
φ∈C1(M)

∫

M
h(x, dφ)dµ = E , (2.4)

where the maximizer µM is the projection of a Mather measure νM on M . The ground energy
level E, common to (2.2, 2.4), admits several equivalent definitions. Evans and Gomes ([11]
[13] [14]) defined E as the effective hamiltonian value

E := inf
φ∈C1(M)

sup
x∈M

h(x, dφ) ,

while the PDE approach to the WKAM theory ([16], [17]) defines E as the minimal E ∈ R
for which the Hamilton-Jacobi equation h(x, dφ) = E admits a viscosity sub-solution on M .
Alternatively E is the only constant for which h(x, dφ) = E admits a viscosity solution [15].
There are other, equivalent definitions of E known in the literature. We shall meet some of
them below.

Example 2.1. i) l = lK := |v|p/(p − 1) where p > 1. Here E = 0 and µM is the volume
induced by the metric g.

ii) l(x, v) = (1/2)|v|2 − V (x) where V ∈ C2(M) (mechanical Lagrangian) . Then E =
maxx∈M V (x) and µM of (2.4) is supported at the points of maxima of V .

iii) l(x, v) = lK(v −W (x)) where W is a section in TM .
Then (2.2) implies E ≤ 0. In fact, it can be shown that E = 0 for any choice of W .
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iv) In general, if P is in the first cohomology of M (H1(M)) then l 7→ l(x, v) − 〈P , v〉
induced the hamiltonian h 7→ h(x, ξ + P ) and E = α(P ) corresponds to the celebrated
Mather (α) function [20] on the cohomology H1(M). See also [27].

The Monge problem of mass transportation, on the other hand, has a much longer history.
Some years before the the French revolution, Monge (1781) proposed to consider the minimal
cost of transporting a given mass distribution to another, where the cost of transporting a unit
of mass from point x to y is prescribed by a function C(x, y). In modern language, the Monge
problem on a manifold M is described as follows: Given a pair of Borel probability measures
µ0, µ1 on M , consider the set K(µ0, µ1) of all Borel mappings Φ : M → M transporting µ0

to µ1, i.e
Φ ∈ K(µ0, µ1) ⇐⇒ Φ#µ0 = µ1

and look for the one which minimize the transportation cost

C(µ0, µ1) := inf
Φ

{∫

M
C(x,Φ(x))dµ0(x) ; Φ ∈ K(µ0, µ1)

}
. (2.5)

In this generality, the set K(µ0, µ1) can be empty if, e.g., µ0 contains an atomic measure while
µ1 does not, so C(µ0, µ1) = ∞ in that case. In 1942, Kantorovich proposed a relaxation of
this deterministic definition of the Monge cost. Instead of the (very nonlinear) set K(µ0, µ1),
he suggested to consider the set P(µ0, µ1) defined in section 1.2-(6). Then, the definition of
the Monge metric is relaxed into the linear optimization

C(µ0, µ1) = min
Λ

{∫

M×M
C(x, y)dΛ(x, y) ; Λ ∈ P(µ0, µ1)

}
. (2.6)

Example 2.2. The Wasserstein distance Wp (p ≥ 1) is obtained by the power p of the metric
D induced by the Riemannian structure:

Wp(µ0, µ1) = min
Λ

{[∫

M×M
Dp(x, y)dΛ(x, y)

]1/p

; Λ ∈ P(µ0, µ1)

}
(2.7)

The advantage of this relaxed definition is that C(µ0, µ1) is always finite, and that a
minimizer of (2.6) always exists by the compactness of the set P(µ0, µ1) in the weak topology
C∗(M ×M). If µ0 contains no atomic points then it can be shown that C(µ0, µ1)′s given by
(2.5) and (2.6) coincide [1].

The theory of Monge-Kantorovich (M-K) was developed in the last few decades in a
countless number of publications. For updated reference see [12], [28]. 2

Returning now to WKAM, it was observed by Bernard and Buffoni ([4][5]- see also [29])
that the minimal measure and the ground energy can be expressed in terms of the M-K
problem subjected to the cost function induced by the Lagrangian (recall section 1.2-5)

CT (x, y) := inf
z

{∫ T

0
l (z(s); ż(s)) ds , z ∈ KT

x,y

}
, T > 0 . (2.8)

2By convention, the name ”Monge problem” is reserved for the metric cost, while ”Monge-Kantorovich
problem” is usually referred to general cost functions
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Then

CT (µ) := CT (µ, µ) = min
Λ

{∫

M×M
CT (x, y)dΛ(x, y) ; Λ ∈ P(µ, µ)

}

and
min

µ

{CT (µ) ; µ ∈M+
1

}
= −TE (2.9)

where the minimizers of (2.9) coincide, for any T > 0, with the projected Mather measure
µM maximizing (2.4) [5]. The action CT induces a metric on the manifold M :

(x, y) ∈ M ×M 7→ DE(x, y) = inf
T>0

CT (x, y) + TE . (2.10)
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Example 2.3.

i) For l(x, v) = |v|p/(p−1), p > 1 we get CT (x, y) = D(x, y)p/(p−1)T p−1 while DE(x, y) =
pE1−1/pDg(x, y)/(p− 1) if E ≥ 0, DE(x, y) = −∞ if E < 0.

ii) l(x, v) = (1/2)|v|2 − V (x) where V ∈ C2(M) (mechanical Lagrangian) . Then DE(x, y)
is the geodesic distance induced by conformal equivalent metric (M, (E − V )g) on M ,
where E ≥ E = supM V .

It is not difficult to see that either DE(x, x) = 0 for any x ∈ M , or DE(x, y) = −∞ for
any x, y ∈ M . In fact, it follows ([22], [10]) that DE(x, y) = −∞ for E < E and DE(x, x) = 0
for E ≥ E and any x, y ∈ M .

Let now λ+ , λ− ∈M+ where λ := λ+ − λ− ∈M0, that is
∫
M dλ = 0. Let

DE(λ) := DE(λ+, λ−) = min
Λ

{∫

M×M
DE(x, y)dΛ(x, y) ; Λ ∈ P(λ)

}
(2.11)

be the Monge distance of λ+ and λ− with respect to the metric DE . There is a dual formu-
lation of DE as follows: Consider the set LE of DE Lipschitz functions on M :

LE := {φ ∈ C(M) ; φ(x)− φ(y) ≤ DE(x, y) ∀ x, y ∈ M} (2.12)

Then (see, e.g [12], [26])

DE(λ) = max
φ

{∫

M
φdλ ; φ ∈ LE .

}
(2.13)

3 Description of the main results

The object of this paper is to establish some relations between the action CT and a modified
action ĈT defined below.

3.1 Unconditional action

For given λ ∈M0 we generalize (2.1) into

Mλ :=
{

ν ∈M+
1 (TM) ;

∫

TM
l(x, v)dν(x, v) < ∞ ;

∫

TM
〈dφ, v〉dν =

∫

M
φdλ for any φ ∈ C1(M)

}

(3.1)
and define

Ĉ(λ) := inf
ν

{∫

TM
l(x, v)dν(x, v) ; ν ∈Mλ

}
. (3.2)

The modified action ĈT : M0 → R ∪ {∞}, T > 0 have several equivalent definitions as
given in Theorem 1 below:

Theorem 1. The following definitions are equivalent:

1. ĈT (λ) := T Ĉ (
λ
T

)
.
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2. ĈT (λ) := minµ supφ

{∫
M −Th(x, dφ)dµ + φdλ ; µ ∈M+

1 , φ ∈ C1(M)
}

.

3. ĈT (λ) := maxE≥E [DE(λ)− ET ] .

In addition if Tc := D
′+
E (λ) < ∞ then for T ≥ Tc,

ĈT (λ) = ĈTc(λ)− TE .

In that case the minimizer µT
λ ∈M+

1 of (3), T > Tc is given by

µT
λ =

Tc

T
µTc

λ +
(

1− Tc

T

)
µM ,

where µM is the projected Mather measure.

Remark 3.1. Note that DE(λ) (2.11, 2.13) is a monotone non-decreasing and concave func-
tion of E while DE(λ) > −∞ by definition. Hence the right-derivative of D′+

E (λ) as a function
of E is defined and positive (possibly +∞ at E = E).

Remark 3.2. A special case of Theorem 1 was introduced in [30].

For the next result we need a two technical assumptions:

H1 There exists a sequence of smooth, positive mollifiers δε : M ×M → R+ such that, for
any φ ∈ C0(M) (res. φ ∈ C1(M))

lim
ε→0

δε ∗ φ = φ

where the convergence is in C0(M) (res. C1(M)) and for any ε > 0 and φ ∈ C1(M)

δε ∗ dφ = d(δε ∗ φ) .

H2 For any (x, p) ∈ T ∗M and ε > 0 there exists δ > 0 such that h(x, ξ) − h(y, ξy) ≤
ε(h(x, ξ) + 1) provided D(x, y) < δ. Here ξy is obtained by parallel translation of (x, ξ) to y.

Remark 3.3. H1 holds for homogeneous spaces, e.g the flat d−torus Rd/Zn or the sphere
Sd−1 = SO(d)/SO(1).
H2 holds, in particular, for any mechanical hamiltonian with continuous potential.

Theorem 2. Assume H1 + H2. For any λ = λ+ − λ− where λ± ∈M+
1 ,

ĈT (λ) = lim
ε→0

min
µ∈M+

1

ε−1CεT (µ + ελ−, µ + ελ+) .

As an application of Theorem 2 we may consider the case where the lagrangian l is
homogeneous with respect to a Riemannian metric g(x):
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Example 3.1. If l(x, v) = |v|p/(p− 1) where p > 1. Then CT (x, y) = Dp(x,y)
(p−1)T p−1 while

DE(x, y) = p
p−1E(p−1)/pD(x, y) and E = 0. It follows that

ĈT (λ) =
W p

1 (λ)
(p− 1)T p−1

, ε−1CεT (µ + ελ+, µ + ελ−) =
W p

p (µ + ελ+, µ + ελ−)
(p− 1)T p−1εp

(3.3)

where the Wasserstein distance Wp is defined in (2.7). Hence, by Theorem 1 and Theorem 2

W1(λ) = lim
ε→0

ε−1 inf
µ∈M+

1

Wp(µ + ελ−, µ + ελ+) .

Remark 3.4. The optimal transport description of the weak KAM theory (2.9) can be con-
sidered as a special case of Theorem 2 where λ = 0. Indeed infµ∈M+

1
ε−1CεT (µ, µ) = −TE

by (2.9). On the other hand, since DE(0) = 0 for any E ≥ E it follows that Tc = 0, hence
ĈTc(0) = 0 so ĈT (0) = −TE as well by the last part of Theorem 1.

3.2 Conditional action

There is also an interest in the definition of action (and metric distance) conditioned with a
given probability measure µ ∈ M+

1 . We introduce these definitions and reformulate parts of
the main results Theorems 1-2 in terms of these.

For a given µ ∈M+
1 and E ≥ E, let

HE(µ) :=
{

φ ∈ C1(M) ;
∫

M
h(x, dφ)dµ ≤ E

}
. (3.4)

In analogy with (2.13) we define the µ−conditional metric on λ ∈M0:

DE(λ‖µ) := sup
φ

{∫

M
φdλ ; φ ∈ HE(µ)

}
. (3.5)

The conditioned, modified action with respect to µ ∈ M+
1 is defined in analogy with

Theorem 1 (2, 3)

ĈT (λ‖µ) := max
E≥E

DE(λ‖µ)− ET ≡ sup
φ∈C1(M)

∫

M
−Th(x, dφ)dµ + φdλ . (3.6)

Example 3.2. As in Example 3.1, l(x, v) = |v|p/(p − 1) implies h(ξ) = q−q|ξ|q where q =
p/(p − 1). Then (3.4, 3.5) is related to (1.4), that is W

(p)
1 (λ‖µ) = DE(λ‖µ) where E = q−q

or
DE(λ‖µ) = qE1/qW

(p)
1 (λ‖µ) , ĈT (λ‖µ) =

q − 1
T 1/(q−1)

(
W

(p)
1 (λ‖µ)

)p
(3.7)

Remark 3.5. It seems there is a relation between this definition and the tangential gradient
[6]. There are also possible applications to optimal network and irrigation theory, where one
wishes to minimize D(λ‖µ) over some constrained set of µ ∈ M+

1 (the irrigation network)
for a prescribed λ (representing the set of sources and targets). See, e.g. [8], [9] and the ref.
within.
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The next result is

Theorem 3. For any λ ∈M0,

DE(λ) = min
µ∈M+

1

DE(λ‖µ) , ĈT (λ) = min
µ∈M+

1

ĈT (λ‖µ) .

The analog of Theorem 2 holds for the conditional action as well. However, we can only prove
the Γ−convergence in that case. Recall that a sequence of functionals Fn : Xn → R∪{∞} is
said to Γ−converge to F : X → R ∪ {∞} (Γ− limn→∞ Fn = F ) if and only if

(i) Xn ⊂ X for any n.

(ii) For any sequence xn ∈ Xn converging to x ∈ X in the topology of X ,

lim inf
n→∞ Fn(xn) ≥ F (x) .

(iii) For any x ∈ X there exists a sequence x̂n ∈ Xn converging to x ∈ X in the topology of
X for which

lim
n→∞Fn(x̂n) = F (x) .

In Theorem 4 below the Γ−convergence is related to the special case where Xn = X:

Theorem 4. Let Xn = M0 ×M+
1 = X and Fn(λ, µ) := nCT/n(µ + λ−/n, µ + λ+/n). Then

ĈT (·‖·) = Γ− lim
n→∞Fn .

From Theorem 4 and Theorem 2 it follows immediately

Corollary 3.1. In addition, if µn is a minimizer of Fn in M+
1 then any converging subse-

quence of µn, n →∞, converges to a minimizer of Ĉ(λ‖·) in M+
1 .

Finally, we note that (1.7) is a special case of Theorem 4. Using Examples 3.1, 3.2 with
ε = 1/n, recalling (q − 1)−1 = p− 1 we obtain

Corollary 3.2.
W1(λ) = lim

n→∞n min
µ∈M+

1

Wp(µ + λ+/n, µ + λ−/n)

4 Proof of Theorems 1&3

We first show that Ĉ(λ) < ∞ (recall (3.2)).

Lemma 4.1. For any λ ∈ M0, Mλ 6= ∅. In particular, since the Lagrangian l is bounded
from below, Ĉ(λ) < ∞.
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Proof. It is enough to show that there exists a compact set K ⊂ TM and a sequence {λn} ⊂
M0 converging weakly to λ such that for each n there exists νn ∈ Mλn whose support is
contained in K. Indeed, such a set is compact and there exists a weak limit ν = limn→∞ νn

which satisfies limn→∞ vνn = vν as well. Hence, if φ ∈ C1(M) then

lim
n→∞

∫

M
〈dφ, v〉dνn =

∫

M
〈dφ, v〉dν , lim

n→∞

∫

M
φdλn =

∫

M
φdλn .

Since νn ∈Mλn we get ∫

M
〈dφ, v〉dνn =

∫

M
φdλn

for any n, so the same equality holds for ν as well.
Now, we consider

λn = αn

n∑

j=1

(
δxj − δyj

)
(4.1)

where xj , yj ∈ M and αn > 0. For any pair (xj , yj) consider a geodesic arc corresponding to
the Riemannian metric which connect x to y, parameterized by the arc length: zj : [0, 1] → M
and |ż| = D(xj , yj) (recall section 1.2-(1)). Then

νn := αn

n∑

j=1

∫ 1

0
δx−zj(t),v−żj(t)dt

satisfies for any φ ∈ C1(M)

∫

M
〈dφ, v〉dνn = αn

n∑

j=1

∫ 1

0
〈dφ (zj(s), żj(s)) żj(t)〉dt = αn

n∑

j=1

∫ 1

0

d

dt
φ (zj(s)) dt

= αn

n∑

j=1

[φ(yj)− φ(xj)] =
∫

M
φdλn (4.2)

hence νn ∈ Mλn . Finally, we can certainly find such a sequence λn of the form (4.1) which
converges weakly to λ.

4.1 Point distances and Hamiltonians

For E ∈ R, let σE : TM → R the support function of the level surface h(x, ξ) ≤ E, that is:

σE(x, v) := sup
ξ∈T ∗x M

{〈ξ, v〉(x) ; h(x, ξ) ≤ E
}

. (4.3)

It follows from our standing assumptions (Section 1.2-7) that σE is differentiable as a function
of E for any (x, v) ∈ TM . For the following Lemma see e.g. [25].

Recall that
DE(x, y) := inf

T>0
CT (x, y) + ET (4.4)

where CT as defined in (2.8). Recall also section 1.2-5:
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Lemma 4.2. .

DE(x, y) = inf
z∈K1

x,y

∫ 1

0
σE (z(s), ż(s)) ds . (4.5)

Given x ∈ M , let
E := inf {E ∈ R; DE(x, x) > −∞} (4.6)

For the following Lemma see [21] (also [27]):

Lemma 4.3. E is independent of x ∈ M . The definitions (4.6) and (2.2) and (2.4) are
equivalent. If E ≥ E then DE(x, y) > −∞ for any x, y ∈ M and, in addition

i) DE(x, x) = 0 for any x ∈ M .

ii) For any x, y, z ∈ M , DE(x, z) ≤ DE(x, y) + DE(y, z)

From (4.4), Lemma 4.2 and the continuity of σE with respect to E ≥ E we get

Corollary 4.1. If E ≥ E then for any x, y ∈ M , DE(x, y) is continuous, monotone non-
decreasing and concave as a function of E.

Note that the differentiability of σE with respect to E does not imply that DE(x, y) is
differentiable for each x, y ∈ M . However, since DE(x, y) is a concave function of E for
each x, y ∈ M , it is differentiable for Lebesgue almost any E > E. We then obtain by
differentiation

Lemma 4.4. If E is a point of differentiability of DE(x, y) then there exists a geodesic arc
z ∈ K1

x,y realizing (4.5) such that the E derivative of DE(x, y) is given by

TE(x, y) :=
d

dE
DE(x, y) =

∫ 1

0
σ
′
E (z(s), ż(s)) ds , (4.7)

where σ
′
E is the E derivative of σE. Moreover

DE(x, y) = CTE(x,y)(x, y) + ETE(x, y) . (4.8)

From (4.3) we get σE(x, v) ≤ |v|max{|p| ; h(x, ξ) ≤ E}. From our standing assumption
on h (section 1.2-(7)) and (4.5) we obtain

Lemma 4.5. For any x, y ∈ M and E ≥ E

DE(x, y) ≤ ĥ−1(E + C)D(x, y)

In particular
lim

E→∞
E−1DE(x, y) = 0 (4.9)

uniformly on M ×M .

Corollary 4.2. For E ≥ E, the set LE (2.12) is contained in the set of Lipschitz functions
with respect to D, and LE is locally compact in C(M).
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Given φ ∈ C1(M) let
H(φ) := sup

x∈M
h(x, dφ) . (4.10)

We extend the definition of H to the larger class of Lipschitz functions by the following

Lemma 4.6. If φ ∈ C1(M) then

H(φ) = min
E≥E

{E; φ ∈ LE} ,

where LE as defined in (2.12).

Proof. First we show that if φ ∈ LE ∩ C1(M) then h(x, dφ) ≤ E for all x ∈ M . Indeed, for
any x, y ∈ M and any curve z(·) connecting x to y

φ(y)− φ(x) =
∫ 1

0
dφ(z(t)) · żdt ≤ DE(x, y) ≤

∫ 1

0
σE(z(t), ż(t))dt

hence dφ(x) · v ≤ σE(x, v) for any v ∈ TxM . Then, by definition, dφ(x) is contained in any
supporting half space which contains the set Qx(E) := {ξ ∈ T ∗xM ; h(x, ξ) ≤ E}. Since this
set is convex by assumption, it follows that dφ ∈ Qx(E), so h(x, dφ) ≤ E for any x ∈ M .
Hence H(φ) ≤ E.

Next we show the opposite inequality h(x, dφ) ≥ E for all x ∈ M . Recall (4.8). Then for
any ε > 0 we can find Tε > 0 and zε ∈ KTε

x,y so

DE(x, y) ≥
∫ Tε

0
l(zε(t), żε(t))dt + (E − ε)Tε . (4.11)

Next, for a.e t ∈ [0, Tε]

h (zε(t), dφ(zε(t))) ≥ żε(t) · dφ(zε(t))− l (zε(t), ·zε(t)) . (4.12)

Integrate (4.12) from 0 to Tε and use zε ∈ KTε
x,y, (4.11, 4.12) and the definition of LE to

obtain

T−1
ε

∫ Tε

0
h (zε(t), dφ(zε(t))) dt ≥ T−1

ε [φ(y)− φ(x)]− T−1
ε

∫ Tε

0
l (zε(t), ·zε(t)) dt ≥ E − ε .

Hence, the supremum of h(x, dφ) along the orbit of zε is, at least, E− ε. Since ε is arbitrary,
then H(φ) ≥ E.

4.2 Measure distances and Hamiltonians

From Lemma 4.6 and Corollary 4.2 we extend the definition of H to the space Lip(M) of
Lipschitz functions on M . Let now define for λ ∈M0

H
∗
T (λ) := sup

φ∈Lip(M)

{
−TH(φ) +

∫

M
φdλ

}
∈ R ∪ {∞} . (4.13)
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Proposition 4.1. For any λ ∈M0

H
∗
T (λ) = sup

E≥E
{DE(λ)− TE} . (4.14)

Proof. By definition of H
∗ and Lemma 4.6,

H
∗
T (λ) = sup

φ∈Lip(M)

[∫

M
φdλ− TH(φ)

]
= sup

φ∈Lip(M)
sup
E≥E

[∫

M
φdλ− TE ; φ ∈ LE

]

= sup
E≥E

sup
φ∈Lip(M)

[∫

M
φdλ− TE ; φ ∈ LE

]
= sup

E≥E
{DE(λ)− TE} , (4.15)

where we used the duality relation given by (2.13).

Corollary 4.3. H
∗
T is weakly continuous on M0.

Proof. For each E ≥ E, the Monge-Kantorovich metric DE : M0 → R is continuous on M0

(under weak* topology). Indeed, it is u.s.c. by (2.11) and l.s.c. by the dual formulation
(2.13).

Also, for each λ ∈M+
1 , DE(λ) is concave and finite in E for E ≥ E. It follows that D is

mutually continuous on [E,∞[×M0. From (4.9) we also get that D is coercive on M0, that
is limE→∞E−1DE(λ) = 0 locally uniformly on M0. These imply that H

∗
T is continuous on

M0 via (4.14).

We return now to Corollary 4.1 and Lemma 4.4. It follows that for any countable dense
set A ⊂ M there exists a (possibly empty) set N ⊂]E,∞[ of zero Lebesgue measure such
that DE(x, y) is differentiable in E ∈]E,∞[−N , for any x, y ∈ A. Let M(A) ⊂ M0 be the
set of all measures in M0 which are supported on a finite subset of A, and such that λ({x})
is rational for any x ∈ A. Again, since M(A) is countable, it follows by Corollary 4.1 that
DE(λ) is differentiable (as a function of E) for any λ ∈ M(A) and any E ∈]E,∞[−N for
a (perhaps larger) set N of zero Lebesgue measure. It is also evident that M0 is the weak
closure of M(A).

Lemma 4.7. For any λ+−λ− ≡ λ ∈M(A) and E ∈]E,∞[−N , there exists an optimal plan
Λλ

E ∈ P(λ+, λ−) realizing
∫

M×M
DE(x, y)dΛλ

E(x, y) = min
Λ∈P(λ+,λ−)

∫

M×M
DE(x, y)dΛ(x, y) ≡ DE(λ) (4.16)

for which
d

dE
DE(λ) =

∑

x,y∈A

Λλ
E({x, y})TE(x, y) . (4.17)

Proof. Let En ↘ E. For each n, set Λλ
En

be a minimizer of (4.16) subjected to E = En. We
choose a subsequence so that the limit

Λλ
E+({x, y}) := lim

n→∞Λλ
En

({x, y}) (4.18)
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exists for any x, y ∈ A. Evidently, Λλ
E+ ∈ P(λ+, λ−) is an optimal plan for (4.16). Next,

DEn(λ)−DE(λ) ≥
∑

x,y∈A

Λλ
En

({x, y}) (DEn(x, y)−DE(x, y))

Divide by En − E > 0 and let n →∞, using (4.18) and (4.7) we get

d

dE
DE(λ) ≥

∑

x,y∈A

Λλ
E+({x, y})TE(x, y) . (4.19)

We repeat the same argument for a sequence En ↗ E for which

Λλ
E−({x, y}) := lim

n→∞Λλ
En

({x, y})

and get
d

dE
DE(λ) ≤

∑

x,y∈A

Λλ
E−({x, y})TE(x, y) . (4.20)

Again Λλ
E− is an optimal plan as well. If Λλ

E− = Λλ
E+ then we are done. Otherwise, define

Λλ
E− as a convex combination of Λλ

E− and Λλ
E+ for which the equality (4.17) holds due to

(4.19, 4.20).

Given x, y ∈ M , let E be a point of differentiability of DE(x, y), and zE
x,y : [0, 1] → M

a geodesic arc connecting x, y and realizing (4.7). Then dτE
x,y := σ

′
E

(
zE

x,y, ż
E
x,y

)
ds is a non-

negative measure on [0, 1], and (4.7) reads TE(x, y) =
∫ 1
0 dτE

x,y. Let µE
x,y be the measure on

M obtained by pushing τE
x,y from [0, 1] to M via zE

x,y:

µE
x,y :=

(
zE

x,y

)
#

τE
x,y ∈M+ ,

that is, for any φ ∈ C(M),

∫

M
φdµE

x,y :=
∫ 1

0
φ

(
zE

x,y(t)
)
dτE

x,y . (4.21)

Definition 4.1. For any λ ∈M(A) and E ∈]E,∞[−N let

µE
Λ :=

∑

x,y∈A

Λλ
E({x, y})µE

x,y

where µE
x,y are as given in (4.21) and Λλ

E is the particular optimal plan given in Lemma 4.7.

Remark 4.1. Note that
∫
M dµE

Λ = D′
E(λ) for any λ ∈ M0(A) and E ∈]E,∞[−N by

Lemma 4.7, where D′
E(λ) = (d/dE)DE(λ).

Definition 4.2. For any λ ∈M0, T > 0, E(λ, T ) is the maximizer of (4.14), that is

DE(λ,T )(λ)− TE(λ, T ) ≡ H
∗
T (λ) .
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By Corollary 4.1 (in particular, the concavity of DE(λ) with E) we obtain

Lemma 4.8. If E(λ, T ) > E then

d+

dE
DE(λ)

∣∣∣∣
E=E(λ,T )

≤ T ≤ d−

dE
DE(λ, T )

∣∣∣∣
E=E(λ,T )

where d+/dE (res. d−/dE) stands for the right (res. left) derivative. If E(λ, T ) = E then

d+

dE
DE(λ)

∣∣∣∣
E=E

≤ T .

4.3 Proof of Theorem 1 (1 ¿2)

First we note that it is enough to assume T = 1. Consider

F(µ, φ) :=
∫

M
−h(x, dφ)dµ + φdλ (4.22)

where λ ∈ M0 is prescribed. Evidently, F is convex lower semi continuous (l.s.c) in µ on
M+

1 and concave upper semi continuous (u.s.c) in φ on C1(M). Since M+
1 is compact, the

Minimax Theorem implies

sup
φ∈C1(M)

min
µ∈M+

1

F(µ, φ) = min
µ∈M+

1

sup
φ∈C1(M)

F(µ, φ) . (4.23)

Next define
G(ν, φ) :=

∫

TM
(l(x, v)− 〈dφ, v〉) dν +

∫

M
φdλ .

on M+
1 (TM)× C1(M). Then (recall (3.1))

sup
φ∈C1(M)

inf
ν∈M+

1 (TM)
G(ν, φ) ≤ inf

ν∈Mλ

∫

TM
l(x, v)dν ≡ Ĉ(λ) . (4.24)

Now

G(ν) := sup
φ∈C1(M)

G(ν, φ) ≡
{ ∫

TM l(x, v)dν if ν ∈Mλ

∞ if ν 6∈ Mλ
.

We recall, again, from the Minmax Theorem that the inequality in (4.24) turns into an
equality provided the set {ν ∈ M+

1 (TM); G(ν) ≤ Ĉ(λ)} is compact. However Ĉ(ν) < ∞ by
Lemma 4.1. Since l is super linear in v uniformly in x (see section 1.2-7) it follows that the
sub-level set {ν ∈Mλ;

∫
TM l(x, v)dν ≤ C < ∞} is tight for any constant C, hence compact.

Next
∫

TM
(l(x, v)− 〈dφ, v〉) dν(x, v) +

∫

M
φdλ

=
∫

M
φdλ− h(x, dφ)dµ +

∫

TM
(l(x, v)− 〈dφ, v〉+ h(x, dφ)) dν(x, v). (4.25)
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where µ = Π#ν. By the Young inequality l(x, v) + h(x, ξ) ≥ 〈ξ, v〉(x) for any ξ ∈ T ∗xM ,
v ∈ TxM with equality if and only if v = hξ(x, dφ(x)). So, the second term on the right of
(4.25) is non-negative, but, for any µ ∈M+

1

inf
ν

{∫

TM
(l(x, v)− 〈dφ, v〉) dν(x, v) ; ν ∈M+

1 (TM) ,Π#ν = µ

}
= −

∫

M
h(x, dφ)dµ

is realized for ν = δv−hξ(x,dφ(x)) ⊕ µ ∈M+
1 (TM). From this and (4.25) we obtain

inf
ν∈M+

1 (TM)
G(ν, φ) = inf

µ∈M+
1

F(φ, µ)

hence
sup

φ∈C1(M)

inf
ν∈M+

1 (TM)
G(ν, φ) = sup

φ∈C1(M)

inf
µ∈M+

1

F(φ, µ) = Ĉ(λ)

and this part of the Theorem follows from (4.23).
¤

4.4 Proof of Theorem 1:(2¿3)

We now define, for any λ ∈M0, a measure µλ ∈M+
1 in the following way:

Assume, for now, that λ ∈ M(A). If E(λ, T ) ∈]E,∞[−N then define µλ = µ
E(λ,T )
Λ

according to Definition 4.1. Otherwise, fix a sequence En ∈]E,∞[−N such that En ↘
E(λ, T ). Similarly, let En ∈]E,∞[−N such that En ↗ E(λ, T ).

Then µEn

Λn
and µEn

Λn
are given by Definition 4.1 for any n. Let µ+

λ be a weak limit of the
sequence µEn

Λn
, and, similarly, µ−λ be a weak limit of the sequence µEn

Λn
.

By Lemma 4.8 and Remark 4.1 we get
∫

M
dµ+

λ ≤ T ≤
∫

M
dµ−λ . (4.26)

If E(λ, T ) = E then we can still define µ+
λ , and it satisfies the left inequality of (4.26).

Definition 4.3. For any λ ∈M0, let µλ defined in the following way:

i) If λ ∈M0(A) then

• If E(λ, T ) > E then µλ is a convex combination of T−1µ+
λ , T−1µ−λ given by (4.26)

such that µλ ∈M+
1 (that is,

∫
dµλ, = 1).

• If E(λ, T ) = E then

µλ = T−1µ+
λ +

(
1− T−1

∫

M
dµ+

λ

)
µM (4.27)

where µM is a projected Mather measure.

ii) For λ 6∈ M0(A), let λn ∈ M0(A) be a sequence converging weakly to λ. Then {µλ} is
the set of weak limits of the sequence µλn.

18



Define

Q(λ, µ) := sup
φ∈C1(M)

{
−

∫

M
h(x, dφ)dµ +

∫

M
φdλ

}
∈ R ∪ {∞} , QT (λ, µ) := Q(λ, Tµ) .

(4.28)
Recall from 1¿2 that

ĈT (λ) = inf
µ∈M+

1

QT (λ, µ) ≡ inf
µ∈M+

1

Q(λ, Tµ) . (4.29)

Also, from (4.13), (4.10) and Proposition 4.1

H
∗
T (λ) ≤ QT (λ, µ) ∀µ ∈M+

1 . (4.30)

We have to show that
H
∗
T (λ) = inf

µ∈M+
1

QT (λ, µ) (4.31)

for any λ ∈M0. It is enough to prove (4.31) for a dense set of inM0, say for any λ ∈M0(A).
Suppose (4.31) holds for a sequence {λn} ⊂ M0(A) converging weakly to λ ∈ M0, that
is, H

∗
T (λn) = ĈT (λn). Since H

∗
T is weakly continuous by Corollary 4.3 we get H

∗
T (λ) =

limn→∞H
∗
T (λn). On the other hand we recall that, according to definition 2 of Theorem 1,

ĈT : M0 7→ R is l.s.c. So limn→∞ ĈT (λn) ≥ ĈT (λ), hence H
∗
T (λ) ≥ ĈT (λ). By (4.29, 4.30) we

get (4.31) for any λ ∈M0.
The proof of 2 ¿ 3 then follows from

Lemma 4.9. For any λ ∈M0(A)

QT (λ, µλ) = H
∗
T (λ) (4.32)

holds where µλ ∈M+
1 is as given in Definition 4.3.

Proof. Let λ ∈M0(A) and E ∈]E,∞[−N . Then we use (4.21) for any φ ∈ C1(M)

−
∫

M
h(x, dφ)dµE

Λ = −
∑

x,y∈A

Λ({x, y})
∫ 1

0
h

(
zE

x,y(s), dφ
(
zE

x,y(s)
))

ds

We now perform a change of variables ds → dt = σ
′
E

(
zE

x,y(s), ż
E
x,y(s)

)
ds which transforms

the interval [0, 1] into [0, TE(x, y)] (see (4.7)) and we get

−
∫

M
h(x, dφ)dµE

Λ = −
∑

x,y∈A

Λ({x, y})
∫ TE(x,y)

0
h

(
ẑE

x,y(t), dφ
(
ẑE

x,y(t)
))

dt

where ẑE
x,y is the re-parametrization of zE

x,y, satisfying ẑE
x,y(0) = x, ẑE

x,y(TE(x, y)) = y. Next

∫

M
φdλ =

∫

M
dΛE

λ (x, y) [φ(y)− φ(x)] =
∑

x,y∈A

Λ({x, y})
∫ TE(x,y)

0
dφ

(
ẑE

x,y(t)
)

˙̂z
E

x,y(t)dt
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so
∫
M φdλ− ∫

M h(x, dφ)dµE
Λ =

∑

x,y∈A

ΛE
λ ({x, y})

∫ TE(x,y)

0

[
dφ

(
ẑE

x,y(t)
)

˙̂z
E

x,y(t)− h
(
ẑE

x,y(t), dφ
(
ẑE

x,y(t)
))]

dt

≤
∑

x,y∈A

ΛE
λ ({x, y})

∫ TE(x,y)

0
l
(
ẑE

x,y(t), ˙̂z
E

x,y(t)
)

dt =
∑

x,y∈A

ΛE
λ ({x, y})CTE(x,y)(x, y)

=
∑

x,y∈A

ΛE
λ ({x, y}) [

CTE(x,y)(x, y) + ETE(x, y)
]− E

∑

x,y∈A

ΛE
λ ({x, y})TE(x, y) =

∑

x,y∈A

ΛE
λ ({x, y})DE(x, y)−E

∑

x,y∈A

ΛE
λ ({x, y})TE(x, y) = DE(λ)− ED

′
E(λ) . (4.33)

To obtain (4.33) we used the Young inequality in the second line, (4.8) and (4.17) on the last
line.

Since (4.33) is valid for any φ ∈ C1(M) we get from this and (4.30) that

DE(λ)− ED′
E(λ) ≥ Q(λ, µE

Λ ) ≥ H
∗
T (λ) = max

E≥E
DE(λ)− TE , (4.34)

holds for any E ≥ E. Now, if it so happens that the maximizer E(λ, T ) on the right of (4.34)
is on the complement of the set N in [E,∞[, then D

′
E(λ) = T =

∫
M dµE

Λ for E = E(λ, T )
via Lemma 4.8 and the inequality in (4.34) turns into an equality. Otherwise, if E(λ, T ) ∈
N − {E}, we take the sequences En ↗ E(λ, T ), En ↘ E(λ, T ) for En, En ∈]E,∞[−N and
the corresponding limits µ+

λ , µ−λ defined in (4.26). Since QT is a convex, l.s.c as a function
of µ we get that the left inequality in (4.34) survives the limit, and

DE(λ,T )(λ)−E(λ, T )
d+

dE
DE(λ,T )(λ) ≥ Q(λ, µ+

λ ) , DE(λ,T )(λ)−E(λ, T )
d−

dE
DE(λ,T )(λ) ≥ Q(λ, µ−λ ) ,

(4.35)
while d+

dEDE(λ,T )(λ) =
∫

dµ+
λ and d−

dEDE(λ,T )(λ) =
∫

dµ−λ . Then, upon taking a convex
combination µλ = αT−1µ+

λ + T−1(1− α)µ−λ such that, according to Definition 4.3,

α
d+

dE
DE(λ,T )(λ) + (1− α)

d−

dE
DE(λ,T )(λ) = T

∫
dµλ = T (4.36)

and using the convexity of Q in µ we get from (4.35, 4.36)

DE(λ,T )(λ)− TE(λ, T ) ≥ Q(λ, Tµλ) ≡ QT (λ, µλ)

This, with the right inequality of (4.32) yields the equality QT (λ, µλ) = H
∗
T (λ).

Finally, if E(λ, T ) = E we proceed as follows: Let En ↘ E and µ+
λ := limn→∞ µEn

λ . It
follows that

∫

M
dµ+

λ = lim
n→∞

∫

M
dµEn

λ = lim
n→∞D

′
En(λ) =

d+

dE
DE(λ) ∈ (0, T ] . (4.37)
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Let µλ as in (4.27). From (4.28, , 4.37) and (2.4) we get

QT (λ, µλ) ≤ Q(λ, µ+
λ ) +

(
T − d+

dE
DE(λ)

)
Q(0, µM ) = Q(λ, µ+

λ )−
(

T − d+

dE
DE(λ)

)
E

(4.38)
while (2.4) and the left part of (4.35) for E = E imply

Q(λ, µ+
λ ) ≤ DE(λ)− E

d+

dE
DE(λ) . (4.39)

From (4.38) and (4.39) we get

QT (λ, µλ) ≤ DE(λ)−ET ≤ H
∗
T (λ)

and the equality holds via (4.30). The last part of Theorem 1 follows from the equality in
(4.30) as well.

4.5 Proof of Theorem 3

Theorem 1-(2) and (3.6) imply

ĈT (λ) = min
µ∈M+

1

ĈT (λ‖µ) . (4.40)

Next, we note that DE(λ‖µ) is a concave function of E for E ≥ E. In fact, from (3.4) and
convexity of h(x, ·) for each x ∈ M we obtain

φi ∈ HEi , i = 1, 2 =⇒ αφ1 + (1− α)φ2 ∈ HαE1+(1−α)E2

for α ∈ (0, 1) and E1, E2 ≥ E. The concavity of D(·)(λ‖µ) follows from its definition (3.5).
Then, by convex duality and (3.6)

DE(λ‖µ) = min
T>0

[
ĈT (λ‖µ) + ET

]
.

By the same argument
DE(λ) = min

T>0

[
ĈT (λ) + ET

]
.

Hence, (4.40) and Theorem 1-(3) imply

min
µ∈M+

1

DE(λ‖µ) = min
µ∈M+

1

min
T>0

[
ĈT (λ‖µ) + ET

]

= min
T>0

min
µ∈M+

1

[
ĈT (λ‖µ) + ET

]
= min

T>0

[
ĈT (λ) + ET

]
= DE(λ) .

¤
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5 Proof of Theorems 2&4

5.1 Auxiliary results

Lemma 5.1 follows from the surjectivity of Exp
(t)
l (x) as a mapping from TxM to M , for any

x ∈ M and any t 6= 0 (Recall definition at Section 1.2-8):

Lemma 5.1. Let Λ ∈ M+(M × M). For any t > 0 there exists a Borel measure Λ̂(t) ∈
M+(TM) such that

(
I ⊗ Exp

(t)
(l)

)
#

Λ̂(t) = Λ. Here I ⊗Exp
(t)
(l)(x, v) :=

(
x,Exp

(t)
(l)(x, v)

)
.

The proof of Lemma 5.2 follows directly from the definition of the optimal plan:

Lemma 5.2. Let Λ be a minimizer for (2.6), B ⊂ M × M a Borel subset and ΛbB the
restriction of Λ to B. Let µ0

B, µ1
B the marginals of ΛbB on the factors of M ×M . Then ΛbB

is an optimal plan for C (
µ0

B, µ1
B

)
. In addition, if B1, B2 ⊂ M ×M are disjoint Borel sets

then
C (

µ0
B1

, µ1
B1

)
+ C (

µ0
B2

, µ1
B2

)
= C (

µ0
B1

+ µ0
B2

, µ1
B1

+ µ1
B2

)

and ΛbB1∪B2 is the optimal plan with respect to C (
µ0

B1
+ µ0

B2
, µ1

B1
+ µ1

B2

)
.

Lemma 5.3 represents the time interpolation of optimal plans (see [28]):

Lemma 5.3. Given t > 0 and λ = λ+ − λ− ∈ M0. Let Λt ∈ P(λ+, λ−) be an optimal plan
realizing

Ct(λ+, λ−) =
∫ ∫

Ct(x, y)Λt(dxdy) .

Let Λ̂(t) ∈ M+(TM) given in Lemma 5.1 for Λ = Λt. Let λs :=
(
Exp

(s)
l

)
#

Λ̂(t). Then, if

0 < s < t,
Cs(λ+, λs) + Ct−s(λs, λ

−) = Ct(λ+, λ−) .

Lemma 5.4. For any λ+, λ− ∈M+
1 satisfying λ = λ+ − λ− ∈M+

1 ,

CT (λ+, λ−) ≥ ĈT (λ) .

Lemma 5.5. ĈT (λ‖µ) is l.s.c in the weak-* topology of M0 ×M+
1 . Assuming H1 and H2,

for any λ ∈ M0, µ ∈ M+
1 there exists a sequence {µ̃n} = {ρn(x)dx} ⊂ M+

1 , {λ̃n} =
{ρn(q+

n − q−n )dx} ⊂ M0 where ρn ∈ C∞(M) are positive everywhere, q±n ∈ C∞(M) non-
negatives such that λ̃n ⇀ λ, µ̃n ⇀ µ and

lim
n→∞ ĈT (λ̃n‖µ̃n) = ĈT (λ‖µ) . (5.1)

Lemma 5.6. For any µ ∈M+
1 , λ = λ+ − λ− ∈M0

lim inf
ε→0

ε−1CεT (µ + ελ+, µ + ελ−) ≥ ĈT (λ‖µ) .

Lemma 5.7. Assume µ = ρ(x)dx and λ = ρ(q+ − q−)dx where ρ, q± are C∞ functions, ρ
positive everywhere on M . Then

lim sup
ε→0

ε−1CεT

(
µ + ελ+, µ + ελ−

) ≤ ĈT (λ‖µ) .
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Lemma 5.8. For T > 0,

ĈT (λ) ≥ lim sup
ε→0

ε−1 inf
µ∈M+

1

CεT (µ + ελ+, µ + ελ−) .

Proof. of Lemma 5.4: We use the duality representation of the Monge-Kantorovich functional
[26] to obtain (recall λ± ∈M+

1 )

CT (λ+, λ−) + ET = sup
ψ,φ

{∫

M
ψdλ− − φdλ+ , φ(y)− ψ(x) ≤ CT (x, y) + ET

}

By (2.10) CT (x, y) + ET ≥ DE(x, y) for any x, y ∈ M so, by (2.12, 2.13)

sup
ψ,φ

{∫

M
ψdλ− − φdλ+ , φ(y)− ψ(x) ≤ CT (x, y) + ET

}
≥ sup

φ

{∫

M
φdλ , φ(y)− φ(x) ≤ DE(x, y)

}

= DE(λ) (5.2)

so
CT (λ+, λ−) ≥ DE(λ)− ET

for any E ≥ E. By Theorem 1-(3)

CT (λ+, λ−) ≥ sup
E≥E

DE(λ)− ET = ĈT (λ) .

Proof. of Lemma 5.5: From (3.5, 3.6) we obtain

ĈT (λ‖µ) = sup
φ∈C1(M)

∫

M
φdλ− Th(x, dφ)dµ .

In particular ĈT is l.s.c (and convex) on M0 ×M+
1 .

Let εn → 0 and λn := λεn := δεn ∗ λ ∈M0 defined by
∫

M
ψdλn := λ(δεn ∗ ψ) ∀ψ ∈ C0(M) . (5.3)

By H1, λn ⇀ λ while λn are smooth. First, we observe that limn→∞ λn ⇀ λ. Indeed, for
any ψ ∈ C1(M):

lim
n→∞

∫

M
ψdλn = lim

n→∞λ (δεn ∗ ψ) = λ(ψ) .

Next, by Jensen’s Theorem and H2

∫

M
h(x, dδε ∗ φ)dµ =

∫

M
h(x, δε ∗ dφ)dµ ≤

∫

M×M
h(x, dφ(y))δε(x, y)dµ(x)dy

≡
∫

M
h(x, dφ)dδε ∗ µ +

∫

M×M
[h(x, dφ(y))− h(y, dφ(y)] δε(x, y)dµ(x)dy (5.4)
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From section 1.2-(7) and using δε(x, y) = o(1) for D(x, y) > δ,
∫

M×M
[h(x, dφ(y))− h(y, dφ(y)] δε(x, y)dµ(x)dy ≤ O(ε) + o(1)

∫

M
h(x, dφ)dδε ∗ µ .

Next, define µn = δεn ∗ µ. Let ψn be the maximizer of Ĉ(λn‖µn), that is

ĈT (λn‖µn) =
∫

M
ψndλn − Th(x, dψn)dµn

By (5.3, 5.4)

ĈT (λn‖µn) ≤
∫

M
δε ∗ ψndλ− (1− o(1))

∫

M
Th(x, dδε ∗ ψn)dµ + O(εn) =

(1−o(1))
[∫

M
δε ∗ ψn

dλ

1− o(1)
−

∫

M
Th(x, dδε ∗ ψn)dµ

]
+εn ≤ (1−o(1))Ĉ

(
λ

1− o(1)
‖µ

)
+εn

(5.5)

We obtained
lim sup

n→∞
ĈT (λn‖µn) ≤ ĈT (λ‖µ)

which, together with the l.s.c of ĈT , implies the result.

Proof. of Lemma 5.6: Recall that the Lax-Oleinik Semigroup acting on φ ∈ C0(M)

ψ(x, t) = LO(φ)(t,x) := sup
y∈M

[φ(y)− Ct(x, y)]

is a viscosity solution of the Hamilton-Jacobi equation ∂tψ − h(x, dψ) = 0 subjected to
ψ0 = φ(x). If φ ∈ C1(M) then ψ is a classical solution on some neighborhood of t = 0, so

lim
T→0

LO(φ)(T,·) = φ ; lim
T→0

T−1
[
LO(φ)(T,x) − φ(x)

]
= h(x, dφ) .

Then for any µ1, µ2 ∈M+
1

CT (µ1, µ2) = sup
φ,ψ∈C1(M)

{∫

M
φdµ2 − ψdµ1 ; φ(x)− ψ(y) ≤ CT (x, y) ∀x, y ∈ M

}
=

sup
φ∈C1(M)

∫

M
φdµ2 − LO(φ)(T,x)dµ1 (5.6)

Hence

lim inf
ε→0

ε−1CεT (µ + ελ+, µ + ελ−) =

lim inf
ε→0

sup
φ∈C1(M)

∫

M
ε−1

[
φ(x)− LO(φ)(εT,x)

]
dµ +

∫

M
φdλ+ − LO(φ)(εT,x)dλ−

≥ sup
φ∈C1(M)

lim
ε→0

∫

M
ε−1

[
φ(x)− LO(φ)(εT,x)

]
dµ +

∫

M
φdλ+ − LO(φ)(εT,x)dλ−

= sup
φ,ψ∈C1(M)

∫

M
−Th(x, dφ)dµ + φdλ := ĈT (λ‖µ) . (5.7)
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Proof. of Lemma 5.7: We may describe the optimal mapping SεT : M → M associated with
CεT (µ + ελ+, µ + ελ−) in local coordinates on each chart. It is given by the solution to the
Monge-Ampère equation

det∇xSεT =
ρ(x)(1 + εq−(x))

ρ(SεT (x))(1 + εTq+(SεT (x))
(5.8)

where
∇ψ = −∇xCεT (x, SεT (x)) (5.9)

and
CεT

(
µ + ελ+, µ + ελ−

)
=

∫

M
CεT (x, SεT (x))ρ(1 + εTq−)dx (5.10)

We recall that the inverse of ∇xCεT (x, ·) with respect to the second variable is Id+εT∇ψ,
to leading order in ε. That is,

∇xCεT

(
x, x + εT∂ph(x, ξ) + (εT )2Q(x, ξ, ε)

)
= −ξ (5.11)

where (here and below) Q is a generic smooth function of its arguments.
Hence, SεT can be expanded in ε in terms of ψ as

SεT (x) = x + εThξ(x,∇ψ) + (εT )2Q(x,∇ψ, ε) (5.12)

We now expand the right side of (5.8) using (5.12) to obtain

1 + εT
[
q−(x)− q+(x)− hξ(x, dψ) · ∇x ln ρ(x)

]
+ (εT )2Q(x,∇ψ, x, ε) (5.13)

while the left hand side is

det(∇xSεT ) = 1 + εT∇ · hξ(x, dψ) + (εT )2Q(x,∇ψ,∇∇ψ, x, ε) (5.14)

Comparing (5.13, 5.14), divide by εT and multiply by ρ to obtain

T∇ · (ρhξ(x, dψ)) = ρ(q− − q+) + εTρQ(x,∇ψ,∇∇ψ, x, ε) . (5.15)

Now, we substitute ε = 0 and get a quasi-linear equation for ψ0:

T∇ · (ρhξ(x, dψ0)) = ρ(q− − q+) . (5.16)

ψ0 is a maximizer of

ĈT (λ‖µ) =
∫

M
ρ(q+ − q−)ψ0 −

∫

M
ρTh(x, dψ0)dx

By elliptic regularity, ψ0 ∈ C∞(M). Multiply (5.16) by ψ0 and integrate over M to obtain
∫

M
ρ(q+ − q−) =

∫

M
ρThξ(x, dψ0) · ∇ψ0
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Then by the Lagrangian/Hamiltonian duality

ĈT (λ‖µ) =
∫

M
ρT [∇ψ0 · hξ(x, dψ0)− h(x, dψ0)] ≡ T

∫

M
ρl (x, hξ(x, dψ0)) . (5.17)

We observe l
(
x, y−x

T

) ≥ T−1CT (x, y). So, (5.10) with (5.12) imply

(εT )−1CεT

(
µ + ελ+, µ + ελ−

) ≤
∫

M
ρ(1 + εTq−)l (x, hξ(x,∇ψε + εTQ(x,∇ψε, ε)) (5.18)

where ψε is a solution of (5.15). Now, if we show that limε→0 ψε = ψ0 in C1(M) then, from
(5.17, 5.18)

lim sup
ε→0

(ε)−1CεT

(
µ + ελ+, µ + ελ−

) ≤ T

∫

M
ρl (x, hξ(x, dψ0)) = Ĉ(λ‖µ) .

Next we show that, indeed, limε→0 ψε = ψ0 in C1(M).
Substitute ψε = ψ0 + φε in (5.15). We obtain

∇ · (σ(x)∇φε) = εQ(x,∇φε,∇∇φε, ε) +∇ ·
(
ρ〈∇tφε, Q̃(x,∇φ, ε) · ∇φε〉

)
(5.19)

where σ := Thξξ(x,∇ψ0(x)) is a positive definite form, while Q̃ is a smooth matrix valued
functions in both x and ε, determined by ∇ψ0 and Q as given in (5.15). A direct application
of the implicit function theorem implies the existence of a branch (λ(ε), ηε) of solutions for

∇ · (σ(x)∇η) = εQ(x,∇η,∇∇η, ε) +∇ ·
(
ρ〈∇tη, Q̃(x,∇η, ε) ◦ ∇η〉

)
+ λ(ε) (5.20)

where η0 = λ(0) = 0 and ε 7→ ηε is (at least) continuous in C1(M) ⊥ 1. Note that for ε 6= 0
we may have a non-zero λ(ε) which follows from projecting the right side on the equation to
the Hilbert space perpendicular to constants (recall that M is a compact manifold without
boundary, and the left side is surjective on this space). We now show that ηε = φε, i.e
λ(ε) = 0 also for ε 6= 0. Indeed, (5.19) is equivalent to (5.8) multiplied by ρ(x)/ε, so (5.20)
is equivalent to

det∇xŜεT =
ρ(x)(1 + εq−(x))

ρ(ŜεT (x))(1 + εq+(ŜεT (x))
+ ερ−1(x)λ(ε)

where ŜεT (x) obtained from (5.12) with ψε := ψ0 + ηε.
Hence

∫

M

(
ρ(ŜεT (x))(1 + εq+(ŜεT (x))

)
det(∇xŜεT ) =

∫

M

(
ρ(x)(1 + εq−(x))

)

+ ελ(ε)
∫

M

ρ(ŜεT (x))
ρ(x)

(1 + εq+(ŜεT (x)) (5.21)
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However, ŜεT (x) = x + O(ε) is a diffeomorphism on M , so

∫

M

(
ρ(ŜεT (x))(1 + εq+(ŜεT (x))

)
det(∇xŜεT ) =

∫

M

(
ρ(ŜεT (x))(1 + Tq+(ŜεT (x))

)
|det(∇xŜεT )|

=
∫

M
ρ(x)(1 + εq+(x)) ≡

∫

M
ρ(x)(1 + εq−(x)) . (5.22)

It follows that

ελ(ε)
∫

M

ρ(ŜεT (x))
ρ(x)

(1 + εq+(ŜεT (x)) = 0 .

Since ρ is positive everywhere it follows that λ(ε) ≡ 0 for |ε| sufficiently small. We proved
that ηε ≡ φε and, in particular, φε → 0 as ε → 0 in C1 ⊥ 1, which implies the convergence of
ψε to ψ0 at ε → 0 in C1 ⊥ 1.

Proof. (of Lemma 5.8) Given ε > 0 let

Dε
E(x, y) := inf

n∈N
[CεnT (x, y) + εnET ] . (5.23)

Evidently, Dε
E(x, y) is continuous on M ×M locally uniformly in E ≥ E. Moreover,

lim
ε↘0

Dε
E = DE (5.24)

uniformly on M ×M and locally uniformly in E ≥ E as well.
We now decompose M ×M into mutually disjoint Borel sets Qn:

M ×M = ∪nQε
n , Qε

n ∩Qε
E,n

′ = ∅ if n 6= n
′

such that
Qε

n ⊂ {(x, y) ∈ M ×M ; Dε
E(x, y) = CεnT (x, y) + εnET} .

Let ΛE
ε ∈ P(λ+, λ−) be an optimal plan for

Dε
E(λ) =

∫

M×M
Dε

E(x, y)dΛE
ε = min

Λ∈P(λ+,λ−)

∫

M×M
Dε

E(x, y)dΛ , (5.25)

and Λn
ε = ΛE

ε bQε
n
, the restriction of ΛE

ε to Qε
n. Set λ±n to be the marginals of Λn

ε on the first
and second factors of M ×M . Then

∑∞
n=1 Λn

ε = ΛE
ε and

∞∑

n=1

λ±n = λ± (5.26)

Remark 5.1. Note that Qε
n = ∅ for all but a finite number of n ∈ N. In particular, the sum

(5.26) contains only a finite number of non-zero terms.
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Let |λn| :=
∫
M dλ±n ≡

∫
M×M dΛε

n. The averaged flight time is

〈T 〉ε := εT

∞∑

n=1

n|λn| (5.27)

We observe that 〈T 〉ε ∈ ∂EDε
E(λ), where ∂E is the super gradient as a function of E. At this

stage we choose E depending on ε, T such that

〈T 〉ε = T + 2εT |λ±| (5.28)

We now apply Lemma 5.1: Recalling Section 1.2-8, let Λ̂n
ε ∈M+(TM) satisfying(

I ⊕Exp
(t=εnT )
(l)

)
#

Λ̂n
ε = Λn

ε . Use Λ̂n
ε to define λj

n :=
(
Exp

(t=εnT )
(l)

)
#

Λ̂n
ε ∈ M+(M) for

j = 0, 1 . . . n. Note that
λ0

n = λ+
n , λn

n = λ−n . (5.29)

By Lemma 5.3

CεnT (λ+
n , λ−n ) + εnET |λn| =

n−1∑

j=0

[CεT (λj
n, λj+1

n ) + εET |λn|
]

(5.30)

From (5.23, 5.25, 5.26, 5.30) and Lemma 5.2

Dε
E(λ) =

∞∑

n=1

Dε
E(λn) =

∞∑

n=1

[CεnT (λ+
n , λ−n ) + εnET |λn|

]
=

∞∑

n=1

n−1∑

j=0

(CεT (λj
n, λj+1

n ) + εET |λn|
)

.

(5.31)
Let now

µε,E = ε
∞∑

n=1

n−1∑

j=1

λj
n .

Note that

µε,E = ε
∞∑

n=1

n∑

j=0

λj
n − ε

∞∑

n=1

λ0
n − ε

∞∑

n=1

λn
n .

By (5.26,5.29, 5.27) we obtain

∣∣µε,E
∣∣ = ε

∞∑

n=1

(n + 1)|λ±n | − 2ε|λ±| = 1 =⇒ µε,E ∈M+
1 . (5.32)

By (5.26, 5.29)

∞∑

n=1

n−1∑

j=0

CεT (λj
n, λj+1

n ) ≥ CεT




∞∑

n=1

n−1∑

j=0

λj
n,

∞∑

n=1

n∑

j=1

λj+1
n


 = ε−1CεT


ε

∞∑

n=1

n−1∑

j=0

λj
n, ε

∞∑

n=1

n∑

j=1

λj+1
n




= ε−1CεT

(
µε,E + ελ+, µε,E + ελ−

)
. (5.33)
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From (5.27, 5.31, 5.33 , 5.32)

Dε
E(λ)− 〈T 〉εE ≥ ε−1CεT

(
µε,E + ελ+, µε,E + ελ−

) ≥ ε−1 inf
µ∈M+

1

CεT

(
µ + ελ+, µ + ελ−

)
.

(5.34)
Finally, Theorem 1-3, (5.24, 5.28, 5.34) imply

ĈT (λ) ≥ DE(λ)− TE = lim
ε→0

Dε
E(λ)− 〈T 〉εE ≥ lim sup

ε→0
ε−1 inf

µ∈M+
1

CεT

(
µ + ελ+, µ + ελ−

)
.

5.2 Proof of theorem 2

From Theorem 1- (1) we get
ĈεT (ελ) = εĈT (λ) .

We now apply Lemma 5.4, adapted to the case where |λ±| := ∫
λ± 6= 1. Then

CT (λ+, λ−) = |λ±|CT

(
λ+

|λ+| ,
λ−

|λ−|
)
≥ |λ±|ĈT

(
λ

|λ±|
)

= ĈT/|λ±| (λ) .

Note that
∫

dµ + εdλ± = 1 + O(ε), hence

ε−1CεT

(
µ + ελ+, µ + ελ−

) ≥ ĈTε(λ)

where Tε → T as ε → 0. Hence

lim inf
ε→0

inf
M+

1

ε−1CεT

(
µ + ελ+, µ + ελ−

) ≥ ĈT (λ) .

The Theorem follows from this and Lemma 5.8.
¤

5.3 Proof of Theorem 4

We have to show that for any (µ, λ) ∈ M+
1 ×M0 and any sequence (µn, λn) ⇀ (µ, λ) as

n →∞:
lim inf
n→∞ nCT/n

(
µn + n−1λ+

n , µn + n−1λ−n
) ≥ Ĉ(λ‖µ) (5.35)

and, in addition, there exists a sequence (µ̂n, λ̂n) ⇀ (µ, λ) for which

lim
n→∞nCT/n

(
µ̂n + n−1λ̂+

n , µ̂n + n−1λ̂−n
)

= Ĉ(λ‖µ) . (5.36)

The inequality (5.35) follows directly from Lemma 5.6. To prove (5.36), we first consider the
sequence (µ̃n, λ̃n) subjected to Lemma 5.5. From Lemma 5.7 and Lemma 5.5,

lim
j→∞

lim sup
n→∞

nCT/n

(
µ̃j + n−1λ̃+

j , µ̃j + n−1λ̃−j
)
≤ lim

j→∞
ĈT

(
λ̃j‖µ̃j

)
= Ĉ(λ‖µ) .
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So, there exists a subsequence jn along which

lim sup
n→∞

nCT/n

(
µ̃jn + n−1λ̃+

jn
, µ̃jn + n−1λ̃−jn

)
≤ Ĉ(λ‖µ) .

This, with (5.35), implies (5.36).
The second part of the theorem follows from (5.35) and Theorem 2.
¤
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