ON THE SURJECTIVITY OF SOME TRACE MAPS

ΒY

ELI ALJADEFF

Department of Mathematics Technion — Israel Institute of Technology 32000 Haifa, Israel

ABSTRACT

Let K be a commutative ring with a unit element 1. Let Γ be a finite group acting on K via a map $t: \Gamma \to \operatorname{Aut}(K)$. For every subgroup $H \leq \Gamma$ define $\operatorname{tr}_H: K \to K^H$ by $\operatorname{tr}_H(x) = \sum_{\sigma \in H} \sigma(x)$. We prove

THEOREM: tr_{Γ} is surjective onto K^{Γ} if and only if tr_{P} is surjective onto K^{P} for every (cyclic) prime order subgroup P of Γ .

This is false for certain non-commutative rings K.

0. Introduction

Let K be a commutative ring with a unit element 1 and let Γ be a finite group acting on K via a morphism $t: \Gamma \to \operatorname{Aut}(K)$. For every subgroup H of Γ and $x \in K$ define the trace map $\operatorname{tr}_H: K \to K$ by

$$\operatorname{tr}_H(x) = \sum_{\sigma \in H} \sigma(x).$$

Clearly, the image of this map lies in K^H , the H invariant elements in K. In this paper I discuss the relation between the surjectivity of $\operatorname{tr}_{\Gamma} \colon K \to K^{\Gamma}$ and of $\operatorname{tr}_H \colon K \to K^H$ for various subgroups $H \leq \Gamma$. Note that tr_H is a K^H linear map, so that the surjectivity of tr_H onto K^H is equivalent to the existence of an element $x_H \in K$ with $\operatorname{tr}_H(x_H) = 1$. Using this, it is easily shown that the surjectivity of $\operatorname{tr}_{\Gamma}$ onto K^{Γ} implies the surjectivity of tr_H onto K^H for every subgroup H in Γ . (For, if $\{t_1, \ldots, t_n\}$ are representatives of the left cosets of H

Received July 2, 1992 and in revised form March 21, 1993