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Abstract

It is shown that optimal network plans can be obtained as a limit of point

allocations. These problems are obtained by minimizing the mass transportation

on the set of atomic measures of prescribed number of atoms.

1 Introduction

Optimal mass transportation was introduced by Monge some 200 years ago and is,

today, a source of a large number of results in analysis, geometry and convexity.

Optimal Network Theory was recently developed. It can be formulated in terms of

Monge-transport corresponding to some non-standard metrics. For updated references

on optimal networks via mass transportation see [BS, BCM].

In this paper we restrict ourselves to the transport of a finite number of points.

Consider N points {x1, . . . xN} (sources) in a state space (say, Rk), and another N

points {y1, . . . yN} ⊂ Rk (sinks). For each source xi we attribute a certain amount of

mass mi ≥ 0. Similarly, m∗
i ≥ 0 is the capacity attributed to the sink yi, while

N∑
1

mi =
N∑
1

m∗
i > 0 .
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We denote this system by an atomic measure λ := λ+ − λ− where

λ+ =
N∑
1

miδxi
; λ− =

N∑
1

m∗
i δyi

(1.1)

where δ(·) is the Dirac delta function.

The object is to transport the masses from the sources to sinks in an optimal

way, such that the sinks are filled up according to their capacity. A natural cost was

suggested by Xia [X]: For each q > 1, Ŵ (q)(λ) is defined below:

Definition 1.1. Given λ as in (1.1),

1. An oriented, weighted graph (γ̂,m) associated with λ is a graph γ̂ embedded in Rk,

composed of vertices V (γ̂) and edges E(γ̂). The orientation of an edge e ∈ E(γ̂)

is determined by ∂e = v+
e − v−e where v±e ∈ V (γ̂) are the vertices composing the

end points of e. The graph γ̂ and the capacity function m : E(γ̂) → R+ ∪ {0}
satisfy

(a) {x1, . . . xN , y1, . . . yN} ⊂ V (γ̂).

(b) For each i ∈ {1, N}, ∑
{e,xi∈∂+e} me = mi and

∑
{e,yi∈∂−e} me = m∗

i , where

∂±e := v±e .

(c) For each v ∈ V (γ̂)− {x1, . . . yN},
∑

{e;v∈∂+e} me =
∑

{e;v∈∂−e} me.

2. The set of all weighted graphs associated with λ is denoted by Γ(λ).

3.

Ŵ (q)(λ) := inf
(γ̂,m)∈Γ(λ)

∑

e∈E(γ̂)

|e|m1/q
e (1.2)

There are two special cases which should be noted. In the limit case q = 1 the op-

timal graph satisfies V (γ̂) = {x1, . . . yN} and Ŵ (1)(λ) = W1(λ
+, λ−). Here Wq(λ

+, λ−)

for q ≥ 1 is the Wasserstein distance between λ+ to λ−,

Wq(λ
+, λ−) :=

(
min
{γi,j}

N∑
1

N∑
1

|xi − yj|qγi,j

)1/q

,
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the minimum is taken in the set of N ×N matrices satisfying

γi,j ≥ 0 ,

N∑
i=1

γi,j = m∗
j ;

N∑
j=1

γi,j = mi .

In particular, W1 depends only on the difference λ = λ+ − λ− (which is not the case

for q > 1).

The second case is the limit q = ∞. This is the celebrated Steiner Tree Problem

[HRW]:

inf
γ̂∈Γ(λ)

∑

e∈E(γ̂)

|e| ,

where, this time, Γ(λ) is the set of all graphs satisfying {xi, yj; mi,m
∗
j > 0} ⊂ V (γ̂)

and is, actually, independent of the masses mi and capacities m∗
i (assumed positive).

In [W, Thm 2] it was shown that W1 is obtained from Wq by an asymptotic expres-

sion for the limit of infinite mass:

Theorem 1.1. If λ = λ+ − λ− is any Borel measure satisfying
∫

dλ = 0, then

lim
M→∞

M1−1/q min
µ∈B+

M

Wq

(
µ + λ+, µ + λ−

)
= W1(λ

+, λ−)

where B+
M stands for the set of all positive Borel measures µ normalized by

∫
dµ = M .

If, in particular, λ is an atomic measure of the form (1.1), than it can be shown

that for fixed M the minimizer of Wq (µ + λ+, µ + λ−) in B+
M is an atomic measure of

a finite number of atoms as well.

The main result of the current paper demonstrates that the network cost Ŵ (q) is

obtained by similar expression, where the total mass M is replaced by the cardinality

of the support of the atomic measure µ.

2 Main results

Here, and throughout the paper (excluding section 5), we assume that λ is an atomic

measures with a finite number of atoms, as in (1.1). For each n ∈ N, let B+,n be the
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set of all atomic, positive measures of at most n atoms, that is:

B+,n :=

{
n∑

j=1

αjδzj
; zj ∈ Rk, αj ≥ 0

}
.

Theorem 2.1. For any q > 1

lim
n→∞

n1−1/q inf
µ∈B+,n

Wq

(
µ + λ+, µ + λ−

)
= Ŵ (q)(λ) . (2.1)

The set B+,n is, evidently, not a compact one. Still we claim

Lemma 2.1. For each n ∈ N, a minimizer µn ∈ B+,n

W
(n)

q (λ+, λ−) := inf
µ∈B+,n

Wq

(
µ + λ+, µ + λ−

)
= Wq

(
µn + λ+, µn + λ−

)
(2.2)

exists.

Remark 2.1. Note that W
(n)

q depends on each of the component λ± while the limit

Ŵ (q) = limn→∞ n1−1/qW
(n)

q depends only on the difference λ = λ+ − λ−.

Theorem 2.2. Let µn be a regular2 minimizer of Wq (µ + λ+, µ + λ−) in B+,n. Then

the associated optimal plan spans a reduced weighted tree3 (γ̂n,mn) which converges (in

Hausdorff metric) to an optimal graph (γ̂,m) ∈ Γ(λ) of (1.2) as n →∞,

3 Auxiliary results

We first reformulate W
(n)

q , as given by (2.2), in terms of a linear programming:

Given q > 1, n ∈ N, Z = (zN+1, . . . zN+n) ∈ (Rk)n, λ = λ+ − λ− as given by (1.1)

and γ := {γi,j 1 ≤ i, j ≤ n + N} ∈ Γ(n, λ+, λ−) :=

{
γi,j ≥ 0 , 1 ≤ k ≤ N =⇒

n+N∑
i=1

γk,i = mk,

n+N∑
i=1

γi,k = m∗
k

n+N∑
i=1

γi,j =
n+N∑
i=1

γj,i for any N + 1 ≤ j ≤ n + N

}
, (3.1)

2see Definition 3.1
3See Definitions 3.2 and 3.4
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Let

Fq(Z, γ) :=
n+N∑

1

n+N∑
1

γi,jFi,j(Z) (3.2)

where

Fi,j(Z) :=





|zi − zj|q N + 1 ≤ i, j ≤ n + N

|xi − zj|q 1 ≤ i ≤ N, N + 1 ≤ j ≤ n + N

|zi − yj|q 1 ≤ j ≤ N, N + 1 ≤ i ≤ n + N

|xi − yj|q 1 ≤ i, j ≤ N

(3.3)

We observe

W
(n)

q (λ+, λ−) ≡ inf
Z∈(Rk)n,γ∈Γ(n,λ+,λ−)

Fq(Z, γ) . (3.4)

Our first object is to prove Lemma 2.1, that is, to replace the ”inf” in (3.4) by

”min”.

Definition 3.1. γ ∈ Γ(n, λ+, λ−) is called a regular plan if it satisfies the following

for any 1 ≤ i, j ≤ n + N :

(a) if k ≥ 1 and i1 = i, i2, . . . ik = i then Πk−1
l=1 γil,il+1

= 0. (In particular γi,jγj,i = 0

and γi,i = 0).

(b) If k > 1, k
′ ≥ 1 and {i1 = i, i2, . . . ik = j} 6≡ {i′1 = i, i

′
2, . . . i

′
k′ = j} then

(
Πk−1

l=1 γil,il+1

) (
Πk

′−1
l=1 γi

′
l ,i
′
l+1

)
= 0.

If γ is a regular plan, then µ ∈ B+,n is called a regular measure if for each i ∈
{N + 1, . . . n + N} there exists zi ∈ Rk where µ({zi}) =

∑n+N
j=1 γi,j.

Lemma 3.1. For each Z ∈ (Rk)n and any plan γ ∈ Γ(n, λ+, λ−) there exists a regular

plan γr ∈ Γ(n, λ+, λ−) satisfying Fq(Z, γr; ) ≤ Fq(Z, γ).

Proof. a) Assume Πk−1
l=1 γil,il+1

> 0. Let il0 such that γil0 ,il0+1 ≤ γil,il+1 for any 1 ≤ l <

k. Then γr1
il,il+1 := γil,il+1 − γil0 ,il0+1 while γr1

i,j = γi,j otherwise. It follows that

γr1 ∈ Γ(n, λ+, λ−) and Fq(Z, γr1) ≤ Fq(Z, γ). Thus γr1 verifies (a).
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b) We may assume that {i2, . . . ik−1}∩{i′2, . . . i′k′−1
} = ∅ for, otherwise, choose 2 pairs

of indices il = i
′
l
′ and im = i

′
m
′ for which {il+1, . . . im−1} ∩ {i′l′+1

, . . . i
′
m
′−1
} = ∅.

Assume
(
Πk−1

l=1 γr1
il,il+1

) (
Πk

′−1
l=1 γr1

i
′
l ,i
′
l+1

)
> 0. Assume (with no limitation to gen-

erality) that
∑k−1

l=1 |Zil − Zil+1
|1/q ≥ ∑k

′−1
l=1 |Zi

′
l
− Zi

′
l+1
|1/q. Let il0 such that

γr1
il0 ,il0+1 ≤ γr1

il,il+1 for any 1 ≤ l < k. Then set

γr
i
′
l ,i
′
l+1

:= γr1

i
′
l ,i
′
l+1

+ γr1
il0 ,il0+1

γr
il,il+1

:= γr1
il,il+1

− γr1
il0 ,il0+1

while γr
i,j = γr1

i,j otherwise. Then γr verifies (3.1) while

Fq(Z, γr) = Fq(Z, γr1)− γr1
il0 ,il0+1




k−1∑

l=1

|Zil − Zil+1
|1/q −

k
′−1∑

l=1

|Zi
′
l
− Zi

′
l+1
|1/q




≤ Fq(Z, γr1) ≤ Fq(Z, γ) (3.5)

Lemma 3.2. The set of regular plans in B+,n associated with Γ(n, λ+, λ−) (3.2) is

compact.

Proof. Let zi be some point in the support of µ where µ({zi}) = Q. We show an a-

priori bound on Q (hence compactness). By (3.1) there exists a point zi2 where γi,i2 ≥
Q/(N + n). We can define such a chain i = i1, i2, . . . where γil,il+1

> µ({zil})/(n + N).

In particular it follows that µ({zil}) ≥ Q/(n + N)l−1. By part (a) of the definition of

regular plans, this chain must be of length ar most n. By (3.1) it must end at some

ik := j ∈ {1, . . . N}. So, µ({zj}) ≥ Q/(n + N)k−1 ≥ Q/(n + N)n−1. On the other

hand, µ({zj}) ≤ max1≤l≤N max{ml,m
∗
l } := M so Q ≤ M(n + N)n−1.

Corollary 3.1. For fixed Z ∈ (Rk)n, λ satisfying (1.1) and q > 1, the function Fq

admits a minimizer γ ∈ Γ(n, λ+, λ−). Moreover, this minimizer is regular.
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Proof. of lemma 2.1

For a fixed λ satisfying (1.1) and q > 1 it follows from Corollary 3.1 that

F q(Z, γ) := inf
γ∈Γ(n,λ+,λ−)

Fq(Z, γ) = min
γ∈Γ(n,λ+,λ−)

Fq(Z, γ) .

It is also evident that F q is continuous and coercive on (Rk)n and that W
(n)

q (λ+, λ−) =

minZ∈(Rk)n F q(Z, λ). In particular (3.4) is attained at a pair (Z, γ) where

µn :=
n+N∑

i,j=N+1

γi,jδzi
∈ B+,n (3.6)

is a regular minimizer of (2.2).

Next we associate a weighted graph (γ̂,m) with a transport plan γ ∈ Γ(n, λ+, λ−)

and Z ∈ (Rk)n as follows (see Fig 1)

Definition 3.2. Let Z = {zN+1, . . . zN+n} ∈ (Rk)n and γ ∈ Γ(n, λ+, λ−). The associ-

ated weighed, directed graph (γ̂, m) is defined as

(i) V (γ̂) = {x1, . . . yN , z1, . . . zn} := {ζ1, . . . ζn+2N}.

(ii) E(γ̂) is given by the set of segments ek,l := [ζk, ζl] for which γk,l > 0, while

∂ek,l = ζk − ζl.

(iii) mek,l
:= γk.l.

(iv) For each zi ∈ V (γ̂), deg(zi) := #{j; γi,j + γj,i > 0}.

Lemma 3.3. Let (Z, γ) as in Definition 3.2 where γ is a regular plan in Γ(λ, n). Then

the associated graph (γ̂,m) contains no cycles. In addition, |E(γ̂)| ≤ n + 2N3.

Proof. The result that the graph γ̂ contains no cycles follows directly from Defini-

tion 3.1-a.

It follows that any vertex v ∈ V (γ̂) must belong to a chain Ci,j := ζ1, . . . ζk where

k ≤ n, ζ1 = xi and ζk = yj. By Definition 3.1-b there exists at most one such a chain
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Figure 1: A tree associated with a regular transport plan (N = 2, n = 11)

for any pair (xi, yj) ∈ {x1, . . . xN} × {y1, . . . yN}. In particular there exists at most N2

such chains.

Let now ζl ∈ Ci,j. If the degree of ζl is greater than 2, there exist deg(ζl) − 1 > 1

chains which contain ζl. By Definition 3.1-b it follows that if two chains Ci′ ,j′ , Ci”,j”

intersect the chain Ci,j then either Ci
′
,j
′ = Ci”,j” (and, in particular, they intersect Ci,j

at the same point), or i” 6= i
′
and j” 6= j

′
. Hence the number of chains crossing Ci,j is

bounded by 2N . As the number of chains {Ci,j} is bounded by N2 it follows that there

exists at most 2N3 chains which intersect other chains. Hence
∑

v∈V (γ̂)(deg(v)− 2) ≤
2N3 which implies the result.

Next, we elaborate some properties of an optimal regular plan.

Definition 3.3. A chain of a regular plan is a sequence of indices i1, . . . , ik such that

γil,il+1
> 0 for k > l ≥ 1 while γil,j = 0 for any j ∈ {1 . . . , n + 2N}. A maximal chain

is a chain which is not contained in a larger chain.

Remark 3.1. By (3.1) we also get that γil,il+1
is a constant along any maximal chain

i1, . . . , ik where 1 < l < k.

Lemma 3.4. If γ is a regular optimal plan then for any chain {ζi1 , . . . ζik}, ζil+1
−ζil =

ζi
l
′
+1
− ζi

l
′ for any l, l

′ ∈ {1, . . . k − 1}. In particular, all points on a chain of the
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Figure 2: The reduced version of the tree presented in Fig 1: All vertices of degree 2

removed.

associated directed graph corresponding to an optimal plan are equally spaced on a line

segment.

Proof. If γR
0 is a regular optimal plan then Z = (z1, . . . zn) is a minimizer of Fq(Z, γR

0 )

in (Rk)n. In particular ∂Fq

∂zj
= 0 holds for any 1 ≤ j ≤ n. If j = il is embedded in a

chain then by definition and Remark 3.1 we obtain

∂Fq

∂zj

= qγil,il+1

[
zil − zil−1

|zil − zil−1
|q−2

− zil+1−zil

|zil+1
− zil|q−2

]
= 0

which implies the result.

Let us now re-define the associated directed graph (γ̂, m) corresponding to an op-

timal regular plan (see Fig 2)

Definition 3.4. The reduced weighted graph (γ̂R, m) associated with an optimal regular

plan is obtained from (γ̂, m) (Definition 3.2) by identifying all edges corresponding to

a maximal chain {i1, . . . ik} with a single edge [ζi1 , ζik ] and assigning the the common

weight me = γil,il+1
to this edge (recall Remark 3.1).

Corollary 3.2. A reduced weighted graph (γ̂n
R,m) associated with an optimal regular

plane in B+,n satisfies the following:
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(i) All the vertices of γ̂n
R are of degree at least 3.

(ii) The number of vertices of γ̂n
R is at most 2N3 where N is the number of atoms of

λ± (in particular, independent of n).

(iii) All the edges of γ̂n
R are line segments.

(iv) There exists C > 0, depending only on N , such that C > me > 1/C for any

e ∈ E(γn
R).

(v) There is a compact set K ⊂ Rk which contains γ̂n
R for any n ∈ N.

Proof. Part (i) follows directly from Definition 3.4. Part (ii) from Lemma 3.3, part

(iii) from Lemma 3.4. To prove part (iv) we repeat the proof of Lemma 3.2, with the

additional information of (ii) (that is, the bound on the number of edges is independent

of n). Part (v) is evident.

4 Proof of Theorems 2.1 and 2.2

Proof. of theorem 2.1:

Let (γ̂,m) be a weighted graph. Then by the Hölder inequality

∑

e∈E(γ̂)

m1/q
e |e| ≤


 ∑

e∈E(γ̂)

me|e|q



1/q

|E(γ̂)|(q−1)/q . (4.1)

If, moreover, (γ̂,m) is obtained from a regular plan γ ∈ Γ(n, λ+, λ−) then

W q
q (µn + λ+, µn + λ−) ≤

∑

e∈E(γ̂)

me|e|q (4.2)

where µn ∈ B+,n associated with γ via (3.6). By Lemma 2.1 there exists an optimal

measure µn ∈ B+,n. Hence (4.2) holds with an equality for this choice of µn. Moreover,

µn can be chosen to be a regular measure (Definition 3.1) hence, by (4.1,4.2) and by
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Lemma 3.3

Ŵq(λ) ≤
∑

e∈E(γ̂)

m1/q
e |e| ≤ W

(n)

q (λ+, λ−)|n + 2N3|(q−1)/q .

This implies the inequality

lim inf
n→∞

n1−1/qW
(n)

q

(
λ+, λ−

) ≥ Ŵ (q)(λ) .

To prove the reverse inequality in (2.1) we consider an optimal weighed graph (γ̂,m)

of Ŵq(λ) and construct µn ∈ B+,n supported on γ̂ which satisfy

lim
n→∞

n1−1/qWq

(
µn + λ+, µn + λ−

)
=

∑

e∈E(γ̂)

m1/q
e |e| = Ŵ (q)(λ) .

Assume ne is the number of points of µn on the edge e, and any atom of µn in e is of

weight me. The contribution to W q
q (µn + λ+, µn + λ−) from e is, then

≈ me

( |e|
ne

)q

ne =
me|e|q
nq−1

e

nq−1W q
q (µn + λ+, µn + λ−) ≈ nq−1

∑

e∈E(γ̂)

me|e|q
nq−1

e

The constraint on ne is given by
∑

e∈E(γ̂) ne = n. Let us rescale we := ne/n. Then we

need to minimize

F (w) :=
∑

e∈E(γ̂)

me|e|q
wq−1

e

subjected to
∑

e∈E(γ̂) we = 1. Let α be the Lagrange multiplier with respect to the

constraint
∑

e∈E(γ̂) we. Since F is convex in we we get that F is maximized at

max
α

min
w

F (w) + α(
∑

e∈E(γ̂)

we − 1) . (4.3)

So. let

G(α) := min
w

F (w) +
∑

e∈E(γ̂)

weα
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The minimizer is obtained at

(q − 1)
me|e|q

wq
e

= α =⇒ we = (q − 1)1/qm1/q
e |e|α1/q

so

G(α) = q(q − 1)1/q−1
∑

e∈E(γ̂)

m1/q
e |e|α(q−1)/q .

and the minimum is obtained at

min
(m,γ̂)∈Γ(λ)

max
α

G(α)− α = max
α

q(q − 1)1/q−1Ŵ (q)(λ)α(q−1)/q − α =
(
Ŵ (q)(λ)

)q

(4.4)

Proof. of Theorem 2.2:

Let us consider the sequence of reduced weighted graphs (γ̂n
R,mn) (see Definition 3.4)

associated with a regular minimizer γn. By Corollary 3.2-(v) there exists a limit γ̂R

(in the sense of Hausdorff metric) of a subsequence of γ̂n
R. By (ii-iv) of the Corollary,

|E(γ̂R)| < 2N3 and is E(γ̂R) is composed of lines. Moreover, the weights mn : E(γ̂n
R) →

R+ converges also, along a subsequence, to m : E(γ̂R) → R+ so (m, γ̂R) ∈ Γ(λ) (see

Definition 1.1-(2)). Moreover

lim
n→∞

∑

e∈E(γ̂n
R)

m1/q
n,e |e| =

∑

e∈E(γ̂R)

m1/q
e |e| (4.5)

By definition of the reduced graph (Definition 3.4) and, in particular, Remark 3.1 we

observe that
∑

e∈E(γ̂n
R) m

1/q
n,e |e| is identical to the same expression on the non reduced

graph γ̂n:
∑

e∈E(γ̂n
R)

m1/q
n,e |e| =

∑

e∈E(γ̂n)

m1/q
n,e |e| . (4.6)

However, on the non-reduced graphs we also have the inequalities (4.1, 4.2)

∑

e∈E(γ̂n)

m1/q
n,e |e| ≤


 ∑

e∈E(γ̂n)

mn,e|e|q



1/q

|E(γ̂n)|(q−1)/q = W
(n)

q (λ+, λ−)|E(γ̂n)|(q−1)/q

(4.7)
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where W
(n)

q as defined in (2.2). Here we also used the optimality of γn.

Finally, from Theorem 2.1

lim
n→∞

W
(n)

q (λ+, λ−)|E(γ̂n)|(q−1)/q = lim
n→∞

W
(n)

q (λ+, λ−)n(q−1)/q = Ŵq(λ) .

This and (4.5-4.7) yields
∑

e∈E(γ̂R)

m1/q
e |e| ≤ Ŵq(λ)

while the opposite inequality follows from the definition of Ŵq.

5 Open problems

There are many possible open problem related to the cost Ŵ q and the generalization

of Theorems 2.1 and 2.2. Here I specify two of them

1. In the case where λ is an atomic measure whose support is countable. I conjecture

that Theorems 2.1 and 2.2 still hold.

2. The case λ is not an atomic measure in Rk. For example, if λ is continuous

with respect to Lebesgue measure in Rk, then [X] states that Ŵ q(λ) < ∞ if

k/(k − 1) > q > 1. I conjecture that , in that case, Theorems 2.1 takes the form

lim
n→∞

n1/k inf
µ∈B+,n

Wq

(
µ + λ+, µ + λ−

)
= Ŵ (q)(λ) .
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