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Abstract

The weak and strong topologies on the space of orbits from the unit interval to the
set of probability measures are considered. A particular interest is periodic orbits of
probability measures on the circle. It is shown that a real-valued rotation number can be
defined in a natural way for all smooth enough orbits whose range consists of probability
measures supported on the whole circle. Furthermore, this number is a continuous func-
tional with respect to an appropriately defined strong topology. The completion of this
space contains deterministic orbits as a special case, whose rotation number is an integer,
coinciding with the topological degree.

1 Introduction

The objects of this study are orbits of probability measures on a compact domain Ω× [0, 1],
given by µ = µt(dx)dt. Here µt is a probability (Borel) measure on Ω and t ∈ [0, 1]. In
particular, we are interested in the case where Ω× [0, 1] is identified with the 2-torus, i.e. Ω
is the unit circle S1 := R/Z and µt is periodic in t (µ0 = µ1).
Example 1 (classical orbits): Let X(t) be a continuous, 1−periodic function from R to
S1. Then

X(t + 1) = X(t) + d ∀t ∈ R
where d := Deg(X) is an integer. Define

µt(dx) = δX(t) .

We can naturally identify the orbit µ = µtdt with the deterministic orbit X(t). Since X is
continuous we may associate the degree d ∈ Z to this orbit.

In general, however, the concept of a degree is not a natural one for measure-valued circle
maps. The periodicity of the measure µ0 = µ1 does not mean that any ”particle” returns to
its original position after one period. If, however, we can associate a continuous flow with
such a map, then we may talk about the rotation number of this flow. This rotation number
is a real number (not necessarily an integer).

Example 2 below shows that not any circle orbit can be associated with such a flow.
Example 2 (variable masses): Consider

µt = m1(t)δX1(t) + m2(t)δX2(t)

where both Xi(t), i = 1, 2 are circle homomorphisms, and mi(t) are nonnegative, 1−periodic
functions of t satisfying m1(t)+m2(t) = 1. Suppose that the orbits of Xi(t) do not intersect.
Even though the latter condition implies that the degrees of Xi, i = 1, 2 are identical, we
do not expect this circle orbit to have neither a degree nor a rotation number, unless mi are
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constants. An observer of such a flow notices that particles move instantly from position
X1(t) to X2(t) (or vice-versa), and must assume that the velocity of these particles is infinite.
Thus no flow, and no rotation number, is associated with such a measure valued circle map.
Example 3 (mixture):

µt =
N∑

1

βiδXi(t) (1.1)

where Xi are deterministic orbits of corresponding degrees di ∈ Z and βi > 0 are constants,∑N
1 βi = 1. If di 6= dj for some i, j ∈ {1, . . . N} then the orbits Xi and Xj must intersect.

An observer may assume that there is no definite velocity at the instant of intersection
X∗ =: Xi(t∗) = Xj(t∗) mod Z, as one of the particle overtakes the second. However, the
observer may interpret it differently. Assume for the moment that βi = βj . Then he may claim
that the two particles ”exchange identity” at the moment of intersection. So, if βk = 1/N
for 1 ≤ k ≤ N there is an interpretation for a deterministic flow transporting µ. On the
other hand, the particles may not return to their initial positions after one period in time
(necessarily, if di − dj is an odd integer). So, the rotation number of this flow, if exists, is
not necessarily an integer! The same conclusion holds also if βi 6= βj . The only difference
is that our observer may need now to interpret the transporting flow as a stochastic one. In
any case, it is not surprising that the associated rotation number is nothing but the weighted
average (see section 6)

r

[
N∑

1

βiδXidt

]
=

N∑

1

βiDeg(Xi) . (1.2)

Another natural generalization of example 3 is example 2 again, but this time we assume
that mi are sequentially constants, with possible discontinuity only at intersection times of
X1 and X2. In contrast to example 2, the ”transfer of mass” between particle 1 and 2 is made
only at time t when X1(t) = X2(t), so no transfer with infinite velocity is required in this case.
Again, there is a flow (and a rotation number) associated with the ”right” interpretation in
this case.
Example 4 (rigid orbits): Consider a continuous orbit of the form

µt(dx) = g(x−X(t))dx (1.3)

where g(·) is 1-periodic density and X(t) is a continuous, deterministic orbit of a given degree
Deg(X) ∈ Z. An observer may attempt to assign the rotation number Deg(X) to this orbit.
However, we find out (see Proposition 6.1 below) that

r [g(x−X(t))dt] = Deg(X)
(

1− 1∫
S1 g−1dx

)
. (1.4)

In particular, the rotation number is zero if and only if the steady rotating orbit is Lebesgue
measure on the circle g ≡ 1, since then no rotation is perceived at all.

There are several points we wish to stress:

1. The existence of a rotation number is related to the existence and the details of the
associated flow, and both existence and details depend upon the interpretation. In this
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paper we shall adopt the principle that the flow must be driven by a velocity field which
is an L2 function with respect to the measure µ. In the case of mixture, for example,
we shall consider only those orbits of the form (1.1) for which

N∑

1

βi

∫ 1

0
|Ẋi|2dt < ∞ .

In the case of less singular orbits µ, e.g. those orbits for which there exists L1 density
µt = ρ(x, t)dx, the condition for the driving velocity field to be in L2(µ) may not be
sufficient to determine this field in a unique way. We shall, therefore, interpret the
driving velocity as the one with minimal L2(µ) norm, among all consistent velocity
fields.

2. There is a natural topology on the set of measure-valued orbits which makes sense for
both classical orbits and mixture, on the one hand, and orbits with smooth density,
on the other. This topology is induced by C0

(
[0, 1];C∗(S1)

)
, namely, the uniform (in

t) convergence with respect to the weak, C∗ topology of measures. The latter can be
metrized using the Wasserstein metric Wp for any 1 ≤ p < ∞. We refer to this as the
weak topology of measure-valued maps.

3. The rotation number cannot be a continuous function with respect to the weak topology.
In particular, (1.4) implies that a sequence of steadily rotating circle orbits determined
by gn(x − X(t)) subjected to

∫
g−1
n = ∞ admit all the same rotation number r =

Deg(X), while the weak limit, determined by g(x − X(t)), if satisfies
∫

g−1 < ∞,
admits a different rotation number via (1.4).

4. On the other hand, the degree of a classical orbit µ = δx−X(t)dt is continuous (and
hence, a constant integer) with respect to the weak topology Thus, if we take (1.2) as a
definition of the rotation number for mixtures (1.1), we will not be able to extend this
definition in a continuous way to the weak closure of this set of mixtures. Indeed, this
weak closure contains, in particular, steadily rotating measures for which the rotation
number cannot be continuous with respect to the weak topology, as argued in point (3)
above.

There are, basically, two different approaches to define the rotation number. The first one
is to start with the set of mixtures (1.1) and define the rotation number for such mixture
as (1.2). In order to extend this definition to the weak closure of mixtures, find a strong
topology on this weak closure such that

a) The set of mixtures is dense with respect to this strong topology in the weak closure.

b) The rotation number defined by (1.2) is a continuous function with respect to the strong
topology.

In this paper we shall attempt a second approach: We start from measures H∞ of contin-
uous (even smooth) and positive densities µ = ρ(x, t)dxdt. For each measure µ ∈ H∞ there
exists a unique, minimal driving velocity field which is smooth enough to generate a unique
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flow. The rotation number is defined in terms of this flow. Then, the weak closure H2 of H∞

is defined. At the next step, a strong topology is defined on H2 such that H∞ is dense in
H2 with respect to this strong topology. Finally, the continuity of the rotation number with
respect to the strong topology is verified. In this way, (1.2) turns out to be a theorem rather
than a definition.

The relation between orbits of measures and velocity fields was discussed by several au-
thors. Ambrosio-Gigli and Savaré [AGS] proved that if such an orbit is absolutely continuous
as a mapping from [0, 1] to the set of measures induced with the quadratic Wasserstein met-
ric (c.f section 2 and references cited therein), then there exists an associated velocity field
transporting this orbit, which is in L2(µt) for a.e. t ∈ [0, 1] (this result was also quoted it [V],
Exercise 8.5, p. 248). However, it is not at all evident that this field is sufficiently regular
to induce a continuous flow. One of the outcomes of this paper is that, at least in the case
of measure-valued circle maps, the induced field is sufficiently regular to define a rotation
number in a unique way.

There is another interesting question raised by this approach. It can be easily shown that
the rotation number, defined by (1.2), is continuous with respect to the weak topology on the
set of mixtures (1.1), provided the number N of classical orbits in the mixture is uniformly
bounded. Is there an analogous statement for orbits with L1 density µ = ρ(x, t)? Point (3)
above suggests the natural conjecture:

Conjecture: The rotation number is weakly continuous on the set of measure-valued circle
maps with L1 density ρ = ρ(x, t), provided ‖ρ−1‖1 is uniformly bounded.

The rest of the paper is organized as follows:
In section 2 we study the weak and strong topologies on the set of measure valued orbits
on a compact metric space (not restricted to circles). Starting from the set H∞ of orbits
subjected to smooth, positive densities, we define its weak closure H2 and a strong topology
such that H∞ is dense in H2 with respect to this strong topology.

In section 3 we review the notion of rotation number on circle maps.
In section 4 we discuss the set H∞ within the realm of circle maps, and show that a

rotation number can be defined on H∞ in a unique way.
In section 5 we utilize the strong topology defined in section 2 to measure valued circle

maps and prove the strong continuity of the rotation number with respect to this topology.
We also prove a restricted version of the conjecture above, namely the weak continuity of
rotation numbers under the stronger condition of bounded L1 norm of the spatial derivative
of ρ−1.

In section 6 we revisit examples 1 and 3, and prove the explicit expressions (1.2) and
(1.4).

Finally, section 7 symmetrizes the results of this paper and suggests some ideas for further
study.
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2 Measure valued orbits

Let Ω ⊂ Rn be a compact set and P (Ω) be the set of probability (Borel) measures on Ω. A
measure-valued path is a functions from [0, 1] to P (Ω). We shall denote such an orbit by

µ = µ(dxdt) = µt(dx)dt

with x ∈ Ω, t ∈ [0, 1] and µt ∈ P (Ω) for almost (Lebesgue) any t. A measure-valued path is
said to admit a velocity field v(x, t) : Ω× [0, 1] → Rn if the continuity equation is satisfied in
the weak form:

∫ 1

0

∫

Ω
[φt + v · ∇xφ]µt(dx)dt = 0 , ∀φ ∈ C∞

0 (Ω× [0, 1]) (2.1)

Given p ≥ 1, the set Hp is defined as the set of all orbits µ for which a velocity field v exists
and satisfies ∫ 1

0

∫

Ω
|v|pµt(dx)dt < ∞

The norm ||µ||p of µ ∈ Hp is given by

||µ||p =: inf
v

[∫ 1

0

∫

Ω
|v|pµt(dx)dt

]1/p

(2.2)

where the infimum is taken over all vector fields satisfying (2.1).
Recall the definition of the p−Wasserstein metric on probability measures:

Definition 1. For any pair of probability measures µ1, µ2 on Ω, the p−Wasserstein metric
(p ≥ 1) is given by

Wp(µ1, µ2) =:
[
inf
λ

∫

Ω
|x− y|pλ(dxdy)

]1/p

where the infimum is taken on all probability measures λ on Ω × Ω whose marginals on Ω
coincide with µ1 and µ2.

This metric is strongly related to the Monge-Kantorovich problem (originated by Monge
[M] and relaxed by Kantorovich [K]. See [V], [R] for recent surveys).

We also recall the following proposition, whose proof can be found in [V]:

Proposition 2.1. W1(µ1, µ2) = supψ∈Lip1(Ω)

∫
Ω ψ(x) (µ2(dx)− µ1(dx))

where Lip1(Ω) is the set of Lipschitz functions with on Ω whose Lipschitz constant not ex-
ceeding one. If Ω is compact then W1 is a merization of the weak topology C∗ on the set of
probability Borel measures on Ω.

In fact, it follows that for compact Ω, Wp is a metrization of C∗ for any p ≥ 1. Note,
however, that the metrics Wp1 and Wp2 are not equivalent unless p1 = p2. The proof of
Lemma 2.1 below is given in [W].
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Lemma 2.1. If Ω is compact and p > 1, then any bounded set in Hp is uniformly
1−1/p-Holder as a function form [0, 1] into C∗(Ω), where C∗ is endowed with the 1−Wasserstein
metric:

W1 (µt2 , µt1) ≤ C (||µ||p) |t2 − t1|1−1/p .

By the Arzela-Ascoli Theorem and some elementary arguments we obtain [W]:

Corollary 2.1. If p > 1 then for any bounded sequence µn ∈ Hp there exists µ∞ ∈ Hp and a
subsequence converging to µ∞ uniformly on [0, 1] with respect to the W1 metric. In addition,
|| · ||p is lower-semi-continuous, namely

lim inf
n→∞ ||µn||p ≥ ||µ∞||p .

Remark 2.1: In the case µ = δx(t)dt with x(t) ∈ Ω for t ∈ [0, 1] then ||µ||p is reduced to
the Lp norm of ẋ := dx/dt.

Remark 2.2: Consider the path µ =
∑k

1 mi(t)δxi(t), where mi(t) are smooth, positive
functions satisfying

∑k
1 mi(t) = 1 and xi smooth orbits from [0, 1] to Ω. Then µ 6∈ Hp for

any p ≥ 1, unless mi are constants. However, there exists a bounded sequence {µn} ⊂ H1

which converges uniformly to µ in the W1 metric. This example demonstrates the necessity
of p > 1 in Corollary 2.1.

Definition 2. A sequence {µn} ⊂ Hp is said to be weakly converging to µ ∈ Hp whenever
it is uniformly bounded in the Hp norm and converges to µ in C

(
[0, 1];C∗(S1)

)
where C∗ is

equipped with the W2 metric.

Since the metrics W1 and W2 metrize the same topology C∗(Ω) for compact Ω, we obtain
from Corollary 2.1:

Lemma 2.2. The set H2 is locally sequentially compact with respect to the weak topology.

The example in Remark 2.2 also demonstrates that not every measure path admits a
velocity field. Even if µ ∈ Hp, the associated vector field may not be smooth enough to
generate a flow. However, by compactness we easily obtain ( [W]):

Lemma 2.3. For any µ ∈ Hp, p > 1 there exists a vector field, defined µ a.e, which realizes
the infimum in (2.2).

From now on, we shall consider only the case p = 2.

Definition 3. H∞ is the set of all paths µ = ρ(x, t)dxdt,
∫
Ω ρ(x, t)dx = 1 for any t ∈ [0, 1],

such that ρ is smooth and strictly positive on Ω× [0, 1].

Lemma 2.4 below is a special case of known results. See [BB, BBG] for informal introduc-
tion and [O] for closely related results on the Riemannian structure of Monge-Kantorovich
flows. The extension for non-smooth case is given in [AGS]. Chapter 8 of [V] contains an
illuminating review of these recent results.
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Lemma 2.4. Assume that Ω ⊂ Rn is compact with smooth boundary and µ ∈ H∞. Then
µ ∈ H2. Moreover, there exists a unique, optimal vector field which minimize (2.2) in the
p = 2 case. This optimal vector field is a gradient, given by the unique (up to a constant)
solution of the elliptic PDE:

∇x · (ρ(x, t)∇xφ) = −∂ρ

∂t
; ∇xφ · n = 0 on ∂Ω ∀t ∈ [0, 1]

where n is the normal to a point on ∂Ω.

The Regularization Theorem below is the p = 2 case of known results. See [Am] in the
case p = 1 and [AGS] for p > 1. See also [W].

Theorem 2.1. Regularization Theorem: The space H2 is the weak closure of H∞.
That is, for any µ ∈ H2 there exists a sequence {µn} ⊂ H∞ where

1. {µn} is uniformly bounded in the H2 metric.

2. µn converges to µ uniformly w.r to [0, 1] in the W1 metric.

Moreover, for any µ ∈ H2 there exists such a sequence for which

lim
n→∞ ||µn||2 = ||µ||2 . (2.3)

The next object is to define an inner-product on H∞. This will enable us to define a
strong topology on H2, alongside the weak one given by Definition 2. For this, we introduce
an additional characterization of the Wasserstein metric W2:

Definition 4. Given a pair of Borel probability measures µ1, µ2 on a common probability
space Ω, the push-forward of µ1 to µ2 is a mapping T : Ω → Ω satisfying

µ1

(
T−1A)

= µ2 (A) ∀Borel sets A ⊂ Ω . (2.4)

We shall often use the common notation T#µ1 = µ2.

Note that an equivalent definition for T#µ1 = µ2 is
∫

Ω
φ(T (x))µ1(dx) =

∫

Ω
φ(x)µ2(dx) (2.5)

for any continuous φ.
From [Am] we know that if the measure µ1 contains no atom then the Wasserstein-2 metric
W2, given in Definition 1, is also given as

W2(µ1, µ2) =

√
inf
T

∫

Ω
|x− T (x)|2 µ1(dx) (2.6)

where the infimum above is in the class of all maps satisfying (2.4). If, however, µ1 contains
an atom then the set of mappings T verifying Definition 4 can be empty.
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We recall the fundamental result of Brenier ([B], see also [G-M]): If µ1 is absolutely
continuous with respect to Lebesgue measure, then there is a unique optimal Borel map T
satisfying (2.4) and realizing the minimum in (2.6). Moreover, this optimal transport T is
the gradient of a convex function Ψ.

Choose now a reference probability measure γ(dx) on Ω, absolutely continuous with re-
spect to Lebesgue (for simplicity, the normalized Lebesgue measure will do, since Ω is com-
pact). Given µ = µtdt ∈ H2 define T (µ,t) : Ω → Ω and

T (µ)(x, t) :=
(
T (µ,t)(x), t

)
∀t ∈ [0, 1] .

such that for t ∈ [0, 1], T (µ,t) is the W2−optimal map transporting γ to µt, that is:

T
(µ,t)
# γ = µt and W2 (µt, γ) =

√∫

Ω

∣∣x− T (µ,t)(x)
∣∣2 γ(dx) .

Given µ = ρ(x, t)dxdt ∈ H∞. By Lemma 2.4 we may associate the unique, smooth optimal
velocity field vµ = ∇xφρ(x, t) with this µ. Let

wµ(x, t) := vµ

(
T (µ,t)(x), t

)
. (2.7)

Then ∫ 1

0

∫

Ω
|vµ|2 µt(dx)dt =

∫ 1

0

∫

Ω
|wµ|2 γ(dx)dt = ||µ||22 . (2.8)

Definition 5. Let µ(1), µ(2) ∈ H∞, v1,v2 the associated velocity fields and w1, w2 the γ(dx)dt
measurable functions associated with v1, v2 via (2.7). The induced inner product

〈
µ(1), µ(2)

〉
γ

:=
∫ 1

0

∫

Ω
w1(x, t) ·w2(x, t)γ(dx)dt (2.9)

defines a metric on H∞ via:

Dγ

(
µ(1), µ(2)

)
:=

√∫ 1

0

∫

Ω
|w1(x, t)−w2(x, t)|2 γ(dx)dt + sup

t∈[0,1]
W2

(
µ

(1)
t , µ

(2)
t

)
. (2.10)

Let Hc
2 be the closure of H∞ with respect to the metric Dγ.

Theorem 2.2. Hc
2 ≡ H2 .

To prove Theorem 2.2 we need the following:

Lemma 2.5. Let
{
µ(n)

}∞
1
⊂ H∞ converges weakly to µ ∈ H2. Let vn ∈ L2

(
µ(n)

)
be the

transport velocity field corresponding to µ(n) (defined uniquely by Lemma 2.4), and wn ∈
L2 (γ(dx)dt) the corresponding vector field via (2.7). Then there exists a subsequence for
which wn converges L2−weakly to some w ∈ L2 (γ(dx)dt) and

∫ 1

0

∫

Ω
|w|2γ(dx)dt ≥ ||µ||22 .
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Proof. of Theorem 2.2:
Given µ ∈ H2, by Theorem 2.1 there exists a sequence

{
µ(n)

}∞
1
⊂ H∞ which converges

weakly to µ and, moreover, satisfies (2.3). By definition of the weak convergence of µ(n) it is
a Cauchy sequence with respect to the metric C([0, 1], C∗) where C∗ is equipped with the W2

metric. Hence the second part of the metric Dγ is Cauchy. We have to show that there exists
a subsequence for which wn is also Cauchy in the strong L2(γdt) metric. By Lemma 2.5 we
can extract such a subsequence for which wn converges L2− weakly to w ∈ L2(γdt) and,
moreover, ||w||2 ≥ ||µ||22. In addition, (2.3) and (2.8) imply that

||µ||22 = lim
n→∞ ||µ

(n)||22 = lim
n→∞ ||wn||22 . (2.11)

It follows that ||w||22 ≥ limn→∞ ||wn||22. Since w is a weak limit of wn in L2(γdt) it follows
that in fact, ||w||22 = limn→∞ ||wn||22 and that the convergence is strong.

Proof. of Lemma 2.5:
Since ||µ(n)||2 are uniformly bounded by assumption, then wn are uniformly bounded on
Ω× [0, 1] with respect to the L2(γdt) norm. In particular, there exists a subsequence of wn

which converge to w ∈ L2(γdt) in the weak topology of L2.

Set mn := vnµ(n). Since
∫ 1
0

∫
Ω |mn| ≤

(∫ 1
0

∫
Ω |vn|2µ(n)

t (dx)dt
)1/2

is bounded by assump-
tion, there exists a subsequence for which mn converges weak−∗ to a vector valued Borel
measure m. We claim that |m| is absolutely continuous with respect to µ. In fact, for each
continuous 0 ≤ ψ ≤ 1 on Ω× [0, 1] we have:

∫ 1

0

∫

Ω
ψd|mn| ≤

∫ 1

0

∫

Ω

√
ψd|mn| ≤

(∫ 1

0

∫

Ω
ψµ

(n)
t (dx)dt

)1/2

||µ(n)||22

which implies that, in the limit,
∫ 1
0

∫
Ω ψd|m| ≤ C

(∫ 1
0

∫
Ω ψµt(dx)dt

)1/2
as well. Let v be

the Radon-Nikodym derivative of m with respect to µ. In addition, the weak convergence of
both µ(n) and mn implies that ∂tµt +∇x ·m = 0 in the sense of distribution, so v is, indeed,
a transporting velocity field of µ ∈ H2 (possibly not a unique or optimal one), and

||µ||22 ≤
∫ 1

0

∫

Ω
|v|2µt(dx)dt . (2.12)

Define now T (t) to be the optimal W2− map transporting γ to µt. Likewise, T
(t)
n the

optimal W2− map transporting γ to µ
(n)
t . For any test function φ ∈ C∞(Ω× [0, 1]) we have:

∫ 1

0

∫

Ω
φ(x, t)v(x, t)µt(dx)dt =

∫ 1

0

∫

Ω
φ

(
T (t)(x), t

)
v

(
T (t)(x), t

)
γ(dx)dt . (2.13)

The l.h.s of (2.13) is the limit of

∫ 1

0

∫

Ω
φ(x, t)vn(x, t)µ(n)

t (dx)dt =
∫ 1

0

∫

Ω
φ(T (t)

n (x), t)wn(x, t)γ(dx)dt . (2.14)
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We claim now that

lim
n→∞

∫ 1

0

∫

Ω
φ(T (t)

n (x), t)wn(x, t)γ(dx)dt =
∫ 1

0

∫

Ω
φ(T (t)(x), t)w(x, t)γ(dx)dt . (2.15)

Granted (2.15) we obtain from (2.13) that
∫ 1

0

∫

Ω
φ

(
T (t)(x), t

)
v

(
T (t)(x), t

)
γ(dx)dt =

∫ 1

0

∫

Ω
φ(T (t)(x), t)w(x, t)γ(dx)dt (2.16)

holds for any test function φ.
Let now WT be the closed subspace of L2(γdt) defined by

WT =
{
φT := φ(T (t)(x), t) ; φ ∈ C(Ω× [0, 1])

}
L2(γdt)

.

Then, (2.16) implies that
w = v ◦ T + q

where q ∈ W⊥
T . Hence

||w||22,γdt = ||v ◦ T ||22,γdt + ||q||22,γdt ≥ ||v ◦ T ||22,γdt =
∫ 1

0

∫

Ω
|v|2µt(dx)dt

which completes the proof via (2.12).
To prove (2.15) it is enough to show that the sequence φn := φ(T (t)

n (x), t) converges
L2(γdt)−strongly to φ∞ := φ(T (t)(x), t). By the assumed smoothness of φ, the compactness
of Ω× [0, 1] and the dominated convergence theorem it is enough to show that

lim
n→∞

∫ 1

0

∫

Ω

∣∣∣T (t)
n (x)− T (t)(x)

∣∣∣
2
γ(dx) = 0 (2.17)

holds for any t ∈ [0, 1].
The proof of (2.17) follows by an adaptation of the proof of Lemma 5.1 in [EGH] (see

also Theorem 1.1.7 in [R]).

3 Measure valued Circle maps

Here we are interested in periodic orbits of probability measures on the circle.

Definition 6. The set HC consists of all orbits µ = µtdt where, for any t ∈ [0, 1], µt is a
Borel probability measure on the circle S1 and µ0 = µ1.

Let us consider now a smooth velocity function v = v(x, t) on the 2-torus S1 × S1. We may,
of course, identify it with a 1× 1 periodic function on R2. This velocity function generates a
flow Y : R2 → R, via

∂Y

∂t
= v(Y, t) ; Y (x, 0) = x

The time one mapping of this flow, denoted by H(x) =: Y (x, 1), is a circle homomorphism.
To see this, one has to observe that Y (x + 1, t) = Y (x, t) + 1, hence H(x + 1) = H(x) + 1.
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We associate a rotation number for a circle map, defined by

r̃ = lim
n→∞

H(n)(x)
n

where H(1)(x) = H(x), H(n+1)(x) = H(n) (H(x)). It is known that r̃ ∈ [0, 1) is independent
of the choice of x. In our case H is originated from a flow Y so we shall define the rotation
number of the flow as

r = lim
t→∞

Y (x, t)
t

.

According to this definition, r can be any real number. Evidently, r̃ is the fractional part of
r.

Can we associate HC with such a flow Y ? Let µ0 be any Borel probability measure on
the circle. We may define (see Definition 4)

µt = Y#(·, t)µ0 .

However, µ = µtdt 6∈ HC , in general, unless µ1 = µ0.
For a comprehensive text on circle maps see [Ar]. Let us recall the following fact con-

cerning circle maps: For any circle map H there is at least one invariant measure ζ, namely
H#(ζ) = ζ.

Lemma 3.1. An orbit µt = Y#(·, t)µ0 is in HC if and only if µ0 is an invariant measure of
the associated homomorphism H = Y (·, 1).

So, how many choices do we have to determine a µ ∈ HC , once a flow Y is given? It is
certainly the same as the number of invariant measures associated with the corresponding
circle homomorphism. Let us consider all possible cases:

1. If r is irrational, then there is a unique invariant measure. Moreover, this measure is
supported on the whole circle.

2. If the rotation number is rational r = p/q, then the homomorphism H(q) must have
fixed points. Each such fixed point x0 represents a q−periodic orbit of H, given by
xi = H(i)(x0), i = 0, . . . q−1. For each such periodic orbit, the measure ζ = 1

q

∑q−1
i=0 δxi

is an invariant measure.

3. As a special case of (2), let us consider the case where H is the identity map. Then any
measure ζ is invariant. In this case, the rotation number r is not only a rational but
an integer, given by the degree of the orbits.

A less familiar fact, whose proof is rather easy, is the following:

Proposition 3.1. If an invariant measure ζ of a circle map H is supported on the whole
circle, then either

(i) r is irrational, or

ii) r = p/q, and H(q) is the identity map.

11



Example: The canonical example of a circle map is the rigid rotation given by

Rr(x) = x + r̂ mod 1

where r̂ ∈ [0, 1). The associated rotation number is evidently r̂. The invariant measure is
the uniform Lebesgue measure on S1. If r is irrational then it is the only invariant measure
associated with Rr. If r = p/q then any measure ζ = ρ(x)dx is an invariant measure, provided
ρ is 1/q−periodic, namely ρ(x + 1/q) = ρ(x).

Notation: The cumulation function Fζ associated with a probability measure ζ on S1 is a
monotone non-decreasing, right continuous function on the line such that, for any 0 < x <
y ≤ 1:

Fζ(y)− Fζ(x) = ζ(x, y] , (3.1)

and Fζ(x+1) = Fζ(x)+1. We shall also use the convention Fζ(0−) = 0 which, together with
(3.1), determines Fζ uniquely.

We may now introduce the function F = F (x, t) as a representation of µ ∈ HC . The
definition of H∞

C below is consistent with Definition 3 of section 2:

Definition 7. The set H∞
C is composed of all orbits µ represented by F = F (x, t) such that:

i) F (x + 1, t) = F (x, t) + 1 and F (x, t) = F (x, t + 1) for any x, t ∈ R (namely, µ ∈ HC).

ii) F is a smooth function of x, t, and Fx > 0 for any x, t ∈ R.

Let now F be a representation of µ ∈ H∞
C . For any arbitrary periodic function λ = λ(t),

let
v(x, t) =

λ(t)− Ft

Fx
(3.2)

that is, the velocity field satisfies
Ft + vFx = λ(t) .

Recall that µt(dx) = ρ(x, t)dx where ρ = Fx(x, t), so the velocity field v transports the orbit
µ, that is the continuity equation

∂ρ

∂t
+

∂ (ρv)
∂x

= 0 (3.3)

is satisfied pointwise. Let Y = Y (x, t) be the flow induced by v:

∂Y

∂t
= v (Y (x, t), t) ; Y (x, 0) = x ∀x ∈ R . (3.4)

From Definition 7 we obtain the following characterization of H∞
C :

Lemma 3.2. Let µ ∈ H∞
C , Y the corresponding flow (3.4) and H = Y (, 1) then

i) µ0 is an invariant measure of H = Y (, 1).

ii) µ0 has a smooth, (strictly) positive density ρ0(x)dx on S1.
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4 Rotation numbers on H∞
C

In general, a vector field may not be smooth enough to generate a flow. If we restrict ourselves
to µ ∈ H∞

C , then a smooth vector field exists by definition. The identity (3.2) yields all vector
fields associated with µ ∈ H∞

C in terms of the cumulation function F associated with µ and
arbitrary, 1−periodic functions λ. Hence, the norm ||µ||2 as given by (2.2) is

||µ||2 =

√
min

λ

∫ 1

0

∫ 1

0

[
λ− Ft

Fx

]2

Fxdxdt =

√
min

λ

∫ 1

0

∫ 1

0

(λ− Ft)2

Fx
dxdt . (4.1)

where the minimum is taken over all 1−periodic functions λ = λ(t).

Definition 8. The set HC,2 is the weak closure of H∞
C with respect to the norm || · ||2, where

weak convergence is understood as in Definition 2.

Now, the optimal velocity field v is the one minimizing the action in (4.1). This condition
determines λ via

λ(t) =

∫ 1
0

Ft(x,t)
Fx(x,t)dx

∫ 1
0

1
Fx(x,t)dx

.

Recalling Fx = ρ and denoting the w average of a function f , where w ≥ 0 on [0, 1] as

〈f〉w =:

∫ 1
0 w(x)f(x)dx∫ 1

0 w(x)dx

we may rewrite λ(t) as
λ(t) = 〈Ft(·, t)〉ρ−1(·,t) . (4.2)

The optimal velocity field is given now, via (3.2), by

v(x, t) = ρ−1(x, t)
[
〈Ft(·, t)〉ρ−1(·,t) − Ft(x, t)

]
.

In particular, it follows that
∫ 1
0 v(x, t)dx = 0 for any t, so

Lemma 4.1. If µ = ρ(x, t)dxdt ∈ H∞
C , then the optimal velocity field is given by a potential

defined on the circle S1, namely

v(x, t) = φx(x, t) = ρ−1(x, t)
[
〈Ft(·, t)〉ρ−1(·,t) − Ft(x, t)

]
(4.3)

where φ is 1-periodic in x.

Note that φx is 1-periodic in t by definition and its integral with respect to x is zero on a
period. Hence φ can be defined as 1-periodic in both x and t, i.e a function on the 2−torus.

We shall now define the rotation number of µ ∈ H∞
C as follows

Definition 9. The rotation number of µ ∈ H∞
C is the rotation number of the flow due to the

optimal velocity field φx associated with µ.
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Using Lemma 4.1 and (4.3) we can give an explicit expression for ||µ||2. Moreover, the
rotation r can also be computed explicitly:

Lemma 4.2. If µ ∈ H∞
C , the rotation number is given by:

r =
∫ 1

0
〈Ft(·, t)〉ρ−1(·,t)dt (4.4)

and

||µ||22 =
∫ 1

0

[
〈F 2

t 〉ρ−1 − 〈Ft〉2ρ−1

] (∫ 1

0
ρ−1(x, t)dx

)
dt (4.5)

Proof. Let x(t) be one of the orbits of the associated flow. Then

d

dt
F (x(t), t) = Fx(x(t), t)ẋ + Ft(x(t), t)

But ẋ = v(x, t) so, by (4.3):

d

dt
F (x(t), t) = 〈Ft(·, t)〉ρ−1(·,t)

Since F (x, t)− x is a periodic function (in both x and t), it follows that |F (x(t), t)− x(t)| is
uniformly bounded, hence

r = lim
t→∞

x(t)
t

= lim
t→∞

F (x(t), t)
t

=
∫ 1

0
〈Ft(·, t)〉ρ−1(·,t)dt

where the last equality follows from the 1− periodicity of 〈Ft(·, t)〉ρ−1(·,t).
Next, we use (4.3) and the definition of 〈·〉ρ−1 to obtain (4.5) via

||µ||22 =
∫ 1

0

∫ 1

0
ρ(x, t)|v|2dxdt =

∫ 1

0

∫ 1

0

(〈Ft〉ρ−1 − Ft

)2

ρ(x, t)
dxdt .

5 Rotation numbers on the extended circle maps

5.1 Strong continuity

Let HC,2 the set of orbits obtained by the weak closure of H∞
C . Our first object is to show

that the rotation number r can be defined on HC,2 in a unique way. For this, we shall present
a different representation for || · ||2 and r on H∞

C as follows:
The cumulation function F = F (x, t) corresponding to µ is defined only up to an additive

periodic function of t. Indeed, condition (i) of Definition 7 is still satisfied if we replace F (x, t)
by F (x, t) + ξ(t) where ξ is a periodic function ξ(t + 1) = ξ(t). In particular, F (x, t) and
F (x, t) + ξ(t) correspond to the same orbit µ.
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Let X = X(F, t) the inverse of F for given t. The gauge freedom in the definition of F
induces the corresponding freedom in the definition of its inverse, namely
X(F + ξ(t), t) and X(F, t) represent the same orbit µ. Note that X satisfies the conditions:

X(F + 1, t) = X(F, t) + 1 ; X(F, t + 1) = X(F ) . (5.1)

We shall take advantage of the gauge freedom to define:

Definition 10. Given µ ∈ HC,2, the standard gauge for X is the one defined by

∫ 1

0
X(F, t)dF =

1
2

∀t ∈ R . (5.2)

Remark: Since X is monotone in F for any t there exists a unique standard gauge for any
such µ.
Remark: The Wp− distance between a pair of Borel measures µ1 and µ2 on S1 is obtained
via [

inf
ω

∫ 1

0
|X1(F + ω)−X2(F )|p dF

]1/p

,

where Xi are the inverse of the cumulative functions corresponding to µi. In particular, for
any pair of orbits µ(1), µ(2), the second part of the metric Dγ , as defined in Definition 5, is
given by

sup
t

√
inf
ω

∫ 1

0
|X1(F + ω, t)−X2(F, t)|2 dF (5.3)

where, again, Xi(F, t) is the inverse cumulation function of µ
(i)
t . Note that the distance given

by (5.3) is independent of the chosen gauge.

Lemma 5.1. Let l be the Lebesgue measure on S1, µ ∈ H∞
C and X = X(F, t) be the corre-

sponding inverse of the cumulation function associated with µ. Then, for any fixed t ∈ R, the
function X = X(·, t) : S1 → S1 is the optimal W2−map transporting l to µt iff X is taken
with the standard gauge (5.2).

Proof. Let ψ ∈ C∞(R) be a 1−periodic function. First, note that by an elementary change
of variables and (5.1):

∫ 1

0
φ(x)µt(dx) =

∫ 1

0
φ(x)Fx(x, t)dx =

∫ 1

0
φ(X(F + ω, t))dF

holds for any ω ∈ R. Hence X(t, ·)#l = µt holds for any gauge.
So, let us fix a special gauge for which X(0, t) = 0 for both the Lebesgue measure l and

µt for all t ∈ [0, 1]. In this gauge, the Lebesgue measure l is identified with Xl(F ) = F .
Let F0 and X0 be the cumulation function of µ and its inverse in this special gauge, namely
F0(0, t) = X0(0, t) = 0 for any t. The optimal W2−map is given by minimizing

Ξ(ω, t) :=
∫ 1

0
|X0(F + ω, t)− F |2 dF
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for any t. The condition Ξ
′
ω(ω, t) = 0 implies

0 =
∫ 1

0
(X0(F + ω, t)− F ) X

′
0,F (F + ω, t)dF =

∫ 1+ω

ω
(X0(F, t)− F + ω) X

′
0,F (F+, t)dF

=
∫ X0(ω)+1

X0(ω)
[x− F0(x, t) + ω] dx =

1
2

+ ω + X0(ω)−
∫ X0(ω)+1

X0(ω)
F0(x, t)dx .

A direct computation, based on Definition 7-(i), yields
∫ X0(ω)+1

X0(ω)
F0(x, t)dx =

∫ 1

0
F0(x, t)dx + X0(ω) ,

which, together with the former line, yields
∫ 1

0
F0(x, t)dx =

1
2

+ ω .

Next, note that, since X0 and F0 are inverse pair in the special gauge, the equality
∫ 1
0 F0(x, t)dx+∫ 1

0 X0(F, t)dF = 1 holds. Hence
∫ 1

0
X0(F, t)dF =

1
2
− ω .

Finally, the gauge X0(F, t) → X(F, t) = X0(F + ω, t) yields, via (5.1):
∫ 1

0
X(F, t)dF =

∫ 1

0
X0(F, t)dF + ω =⇒

∫ 1

0
X(F, t)dF =

1
2

.

Definition 11. Let a = a(t) a periodic function on R and A = A(t) its primitive. For any
function Y (F, t) which is periodic in both F and t, the shifted function SAY is defined as
SAY (F, t) := Y (F + A(t), t).

Next, since X(F (x, t), t) ≡ x so

dX

dt
(F (x, t), t) = XF Ft + Xt = 0 (5.4)

and XF = F−1
x

∣∣
x=X

. Then, using (5.4) and Definition 11

S−A

(
∂

∂t
SAX

)
=

a(t)− Ft

Fx

∣∣∣∣
x=X(F,t)

= v (X(F, t), t) . (5.5)

From (3.2) we observe that v(x, t) is a transporting velocity associated with the orbit µ =
Fxdxdt. In particular, if Λ(t) is the primitive function of λ(t) defined as in (4.2), and

X(F, t) := SΛX(F, t) ,

Then
S−ΛXt = v (X(F, t), t) , (5.6)

where v is the optimal velocity field transporting µ (see (4.2), (4.3)).

16



Lemma 5.2. Let µ ∈ H∞
C and X the inverse of the corresponding cumulation function. Then

||µ||22 =
∫ 1

0

∫ 1

0

∣∣Xt

∣∣2 dFdt = inf
A

∫ 1

0

∫ 1

0
|(SAX)t|2 dFdt . (5.7)

Proof. From (2.2) with p = 2, (5.5) and (5.6) it follows that

||µ||22 =
∫ 1

0

∫ 1

0

∣∣S−ΛXt

∣∣2 dFdt = inf
A

∫ 1

0

∫ 1

0
|S−A (SAX)t|2 dFdt .

The shift operator SA leaves invariant the integral over one period of F , so (5.7) follows.

Remarks:

i) The function Λ(t) depends, of course, on the gauge. A different gauge corresponds to a
change of Λ → Λ + ξ where ξ is a periodic function.

ii) Even with a fixed gauge, the function Λ, defined by (5.7), is determined only up
to a constant. We make the convention that

∫ 1
0 Λ(t)dt = 0 in order to determine it

completely.

The rotation number r can be written as

r = Λ(1)− Λ(0) =
∫ 1

0

∫ 1

0
λ(t)dxdt =

∫ 1

0

∫ 1

0

λ(t)
Fx(X(F, t), t)

dFdt . (5.8)

while ∫ 1

0

∫ 1

0
Ft(x, t)dxdt =

∫ 1

0

∫ 1

0

Ft

Fx
dFdt = 0 (5.9)

since F is 1−periodic in t. Subtracting (5.9) from (5.8), using (5.6) and the 1− periodicity
of X w.r. to F we obtain:

r =
∫ 1

0

∫ 1

0
S−ΛXt(F, t)dFdt =

∫ 1

0

∫ 1

0
Xt(F, t)dFd . (5.10)

Now, let µ(i) ∈ H∞
C , i = 1, 2, the corresponding shifted inverse of the cumulation functions

X
(i)(F, t) and shifts Λi. Let the inner product

〈µ1, µ2〉 =
∫ 1

0

∫ 1

0
S−Λ1

(
X

(1)
t

)
· S−Λ2

(
X

(2)
t

)
dFdt (5.11)

and the metric

D(µ(1), µ(2)) =

√∫ 1

0

∫ 1

0

∣∣∣S−Λ1

(
X

(1)
t

)
− S−Λ2

(
X

(2)
t

)∣∣∣
2
dFdt + sup

t∈[0,1]
W2

(
µ

(1)
t , µ

(2)
t

)
.

(5.12)
It follows from Lemma 5.1 that (5.11) and (5.12) are consistent with the inner product and
metric defined in Definition 5 where γ is replaced by the Lebesgue measure, provided X(i)

are chosen in the standard gauge.
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On the other hand, if we apply (5.10) to X(i) in the standard gauge we obtain

|r1 − r2| =
∣∣∣∣
∫ 1

0

∫ 1

0

(
X

(1)
t −X

(2)
t

)
dFdt

∣∣∣∣ ≤ D
(
µ(1), µ(2)

)
,

hence

Lemma 5.3. The rotation number defined on H∞
C is 1−Lipschitz with respect to the D

topology.

We now use Theorem 2.2 to close H∞
C in the strong topology:

Theorem 5.1. The rotation number r is defined, continuous and 1−Lipschitz on the whole
of HC,2 with respect to the strong topology induced by D.

Let us consider again the cumulation inverse X corresponding to µ ∈ H∞
C . Since Ξ(F, t) :=

X(F, t)− F is a periodic function of F , we can expand it into a Fourier series:

Ξ(F, t) =
∑

j∈Z
aj(t)e2πijF .

It follows that, for X in the standard gauge

SAX(F, t) = F + A(t) +
∑

j∈Z
aj(t)e2πij(F+A(t)) (5.13)

also
Xt(F, t) := (SΛX)t (F, t) = Λ̇(t) +

∑

k∈Z

[
ȧk + 2πikΛ̇ak

]
e2πik(F+Λ(t)) (5.14)

and
S−ΛXt(F, t) = Λ̇(t) +

∑

k∈Z

[
ȧk + 2πikΛ̇ak

]
e2πikF (5.15)

We obtain the following:

Proposition 5.1. Let µ(j) ∈ H∞
C converges weakly to µ ∈ H2,C . Then the corresponding

inverse cumulations Xj in the standard gauge converges strongly in L2([0, 1]2) to the inverse
cumulation X of µ. If, in addition, the convergence on µ(j) is strong, then

i) If Λj(t) is the corresponding shifts, then there exists Λ = Λ(t) such that
limj→∞

∫ 1
0 |Λ̇j(t)− Λ̇(t)|2dt = 0.

ii) The sequence ∂tXj converges in strong L2([0, 1]2) to Z := ∂tSΛX. In particular, Z ∈
L2([0, 1]2).

Remark: Note that Proposition 5.1 does not guarantee, in general, that Λ is the optimal
shift corresponding to the limit X in the sense of Lemma 5.2, nor that such an optimal shift
exists at all.

18



Proof. From Definition 2 and (5.3) we obtain the
{
µ(j)

}
is a Cauchy sequence in C([0, 1], C∗)

where C∗ is equipped with the W2 metric. In particular there exists a subsequence for which
∞∑

j=1

W2

(
µ(j+1), µ(j)

)
< ∞ .

This implies that there exists a sequence αj = αj(t) on [0, 1] such that
∞∑

j=1

∫
|Xj+1(F + αj+1(t), t)−Xj(F, t)|2 dFdt < ∞

where Xj are the inverse cumulations of µ(j). Let Aj(t) =
∑j αi(t). Then

∞∑

j=1

∫ ∣∣SAj+1Xj+1 − SAjXj

∣∣2 dFdt < ∞

so the subsequence SAjXj converges L2 strongly to some Y ∈ L2([0, 1]2).
From (5.13) it follows that

∥∥SAj+1Xj+1 − SAjXj

∥∥2

2
=

∫ 1

0
|Aj+1(t)−Aj(t)|2 dt +

∑

k∈Z

∫ 1

0

∣∣∣a(j+1)
k (t)e2πikAj+1(t) − aj

k(t)e
2πikAj(t)

∣∣∣
2
dt

where a
(j)
k is a Fourier coefficient of Xj − F . In particular, Aj is also a Cauchy sequence in

L2 and converges strongly to some A ∈ L2([0, 1]).
It implies, in particular, that for any φ ∈ C1([0, 1]2), the sequence φj := SAjφ converges

L2 strongly to SAφ.
Now, we can further restrict the subsequence so that Xj converges in distribution to some

X ∈ L2([0, 1]2). It follows that
∫ 1

0

∫ 1

0
XjφdFdt →

∫ 1

0

∫ 1

0
XφdFdt . (5.16)

On the other hand
∫ 1

0

∫ 1

0
XjφdFdt =

∫ 1

0

∫ 1

0
SAj (Xj)φjdFdt →

∫ 1

0

∫ 1

0
Y SA(φ)dFdt =

∫ 1

0

∫ 1

0
S−A(Y )φdFdt

(5.17)
since both subsequences SAjXj and φj converge strongly to Y and SAφ, respectively.

From (5.16) and (5.17) we obtain that X = S−AY . In particular:

‖X‖2 = ‖Y ‖2 = lim
n→∞ ‖SAnXn‖2 = lim

n→∞ ‖Xn‖2

where the second equality follows from the strong convergence of SAjXj to Y . This, together
with the assumed weak convergence of Xj to X, implies the strong convergence of this
sequence.

Now, if another subsequence admits another limit X̂, then, by the same argument as
before, X̂ is a shift of X, namely ∃C = C(t) such that X̂ = SCX. But since both X and X̂
admit the standard gauge (which is preserved in the weak limit), it follows that C ≡ 0.
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i) From (5.14) and (5.12) it follows that the sequence S−Λj∂tXj is Cauchy in the strong L2

sense, and that

∥∥S−Λj∂tXj − S−Λm∂tXm

∥∥2

2
=

∫ 1

0

∣∣∣Λ̇j(t)− Λ̇m(t)
∣∣∣
2
dt +

∑

k∈Z

∫ 1

0

∣∣∣β(j)
k − β

(m)
k

∣∣∣
2
dt

where β
(j)
k := ȧ

(j)
k − 2πikΛ̇ja

(j)
k e−2πikΛj(t). In particular, Λ̇j is a Cauchy sequence in

L2([0, 1]) as well.

ii) The proof of (ii) is the same as the proof of the first part of the Proposition, using the
strong L2 convergence of Λj , implied by (i).

5.2 Weak continuity

In section 6 we demonstrate the existence of a weakly converging sequence µ(j) ∈ H∞
C such

that the rotation number of its limit does not coincide with the limit of the rotation numbers.
In the case under consideration, the densities ρj associated with µ(j) satisfy

∫ 1
0

∫ 1
0 ρ−1

j dxdt =
∞ while the density of the weak limit satisfies

∫ 1
0

∫ 1
0 ρ−1 < ∞.

Note that, in terms of the inverse cumulation X:

||ρ−1||1 =
∫ 1

0

∫ 1

0
ρ−1dxdt =

∫ 1

0

∫ 1

0
F−1

x dxdt =
∫ 1

0

∫ 1

0
|XF |2dFdt . (5.18)

Lemma 5.4. Let µ ∈ HC,2 such that the corresponding density ρ satisfies ρ−1 ∈ L1. Then
the following are equivalent

i) Λ̇(t) = −
R 1
0 XF XtdFR 1
0 |XF |2dF

.

ii) A = Λ is the minimizer of
∫ 1
0

∫ 1
0

∣∣∂t

(
SAX

)∣∣2 dFdt.

iii) For any continuous, periodic function b = b(t),∫ 1
0

∫ 1
0 b(t)∂t

(
SΛX

)
∂F

(
SΛX

)
dFdt = 0.

The rotation number r = r(µ) is determined by r = Λ(1)− Λ(0).

Proof. First note that, by (5.18), (5.7) and the Cauchy-Schwartz inequality that Λ̇ ∈ L1([0, 1]).
Let B be any differentiable functions whose derivatives b = B

′
is continuous and periodic.

The equivalence of (i,ii,iii) follows immediately from
∫ 1

0

∫ 1

0

∣∣∂t

(
SΛ+εBX

)∣∣2 dFdt =
∫ 1

0

∫ 1

0

∣∣∂t

(
SΛX(F + εB(t), t)

)∣∣2 dFdt

=
∫ 1

0

∫ 1

0

∣∣∣ε∂F

(
SΛX

)
(F + εB(t), t)b(t) + ∂t

(
SΛX(F + εB, t)

)∣∣
B=B(t)

∣∣∣
2
dFdt
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=
∫ 1

0

∫ 1

0

∣∣∂t

(
SΛX

)
(F, t)

∣∣2 dFdt + 2ε

∫ 1

0

∫ 1

0
∂t

(
SΛX

)
∂F

(
SΛX

)
bdFdt

+ε2

∫ 1

0

∫ 1

0

∣∣∂F

(
SΛX

)∣∣2 b2(t)dFdt . (5.19)

Finally, let µn ∈ H∞
C converge strongly to µ. Let Λn be the shift associated with µn. Then

Proposition 5.1 guarantees that the strong L2 convergence of Λ̇n to Λ̇. The last statement
follows from (5.8) which implies r(µn) = Λn(1)− Λn(0), from Λn(1)− Λn(0) → Λ(1)− Λ(0)
and from the continuity of r in the strong topology.

The main result of this section is

Theorem 5.2. Let K > 0 and K ⊂ H∞
C such that ∂xρ−1 ∈ L1(S1 × S1) and

∥∥∥∥
∂ρ−1

∂x

∥∥∥∥
1

< K , (5.20)

for any density of µ ∈ K. Let K the weak closure of K. Then, the rotation number is
continuous with respect to the weak topology on K.

Before proceeding, we interpret the condition (5.20) in terms of the inverse cumulation
X as follows: ∥∥∥∥

∂ρ−1

∂x

∥∥∥∥
1

=
∫ 1

0

∫ 1

0

|ρx|
ρ2

dxdt =
∫ 1

0

∫ 1

0
|XFF | dFdt . (5.21)

Indeed, if we differentiate the identity FxXF = 1 by the variable F we obtain

Fxx|XF |2 + FxXFF = 0 → Fxx = −FxXFF

|XF |2 = − XFF

|XF |3

and (5.21) follows from |ρx|ρ−2dx = |Fxx|F−2
x dx = |Fxx|X3

F dF .
From (5.21) and (5.2) we obtain

Lemma 5.5. Assume µ ∈ H∞
C with the associated density ρ satisfying (5.20). Let X be

the associated inverse cumulation in standard gauge. Then the Fourier coefficients aj of
Ξ = X − F satisfy

∫ 1

0
|ak(t)|dt ≤ K

(2π)2|k|2 ∀k 6= 0 ; a0(t) =
1
2

∀t .

Next, from
X(F, t) = Ξ(F + Λ(t), t) + F + Λ(t)

we obtain the Fourier expansion of Xt and XF (both periodic in F ) via

Xt = Λ̇ +
∑

0 6=k∈Z

[
ȧk + 2πikakΛ̇

]
e2πik(F+Λ(t)) , XF = 1 + 2πi

∑

k∈Z
kake

2πik(F+Λ(t)) (5.22)

where we used a0 = 1/2, hence ȧ0 = 0 in the standard gauge. It follows from Lemma 5.4-(iii)
that
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Lemma 5.6. Given µ(n) ∈ H∞
C , Xn the corresponding inverse cumulation in standard gauge

and Λn the corresponding shift, then
∫ 1

0
|Λ̇n|2dt +

∑

0 6=k∈Z

∫ 1

0
|ȧ(n)

k + 2πikΛ̇na
(n)
k |2dt = ||µ||22 (5.23)

as well as ∫ 1

0
b(t)

[
Λ̇n +

∑

k∈Z
ka

(n)
k ȧ

(n)
k + 2πi

∑

k∈Z
k|a(n)

k |2Λ̇n

]
dt = 0 (5.24)

for any continuous, periodic b = b(t).

Proof. of Theorem 5.2:
We know by Proposition 5.1 the strong L2 convergence of Xn → X. In addition, ∂F Xn are
bounded uniformly in L2([0, 1]2) since ρ−1

n are bounded uniformly in L1([0, 1]2), so XF ∈
L2([0, 1]2) as well. Since ‖µ(n)‖2 are uniformly bounded, it follows from (5.23) that Λ̇n are
uniformly bounded in L2([0, 1]), so there exists a subsequence along which Λ̇n → Λ̇ in the
weak L2 sense, and Λn → Λ uniformly. Since r(µ(n)) = Λn(1) − Λn(0), it is enough to
show that Λ is the optimal shift associated with the limit X, hence r = Λ(1) − Λ(0). By
Lemma 5.4-(iii) it is enough to show that Λ̇ + Ψ ≡ 0 as an L2 function, where

Ψ :=
∑

k∈Z
kakȧk + 2πi

∑

k∈Z
k|ak|2Λ̇ ,

ak are the Fourier coefficients of X.
For any k ∈ Z, the strong L2([0, 1]2) convergence of Xn to X implies the strong L2([0, 1])

convergence of the Fourier coefficient a
(n)
k of Xn to ak. Since Λ̇n converges weakly to Λ̇

as well, then 2πikΛ̇na
(n)
k converges L2 weakly to 2πikΛ̇ak, and 2πikΛ̇n

∣∣∣a(n)
k

∣∣∣
2

converges L2

weakly to 2πikΛ̇ |ak|2. In addition, we have by (5.23) the weak L2([0, 1]) convergence (along
a subsequence) of ȧ

(n)
k + 2πikΛ̇na

(n)
k . This implies that ȧ

(n)
k converges L2 weakly as well, and

its limit must be ȧk. In particular, a
(n)
k ȧ

(n)
k converges L2 weakly to akȧk for any k.

We obtain from the above that, for any N ∈ N, the weak L2 convergence, as n →∞, of

Ψ(n)
N :=

∑

|k|≤N

ka
(n)
k ȧ

(n)
k + 2πi

∑

|k|≤N

k|a(n)
k |2Λ̇n

to
ΨN :=

∑

|k|≤N

kakȧk + 2πi
∑

|k|≤N

k|ak|2Λ̇ .

Let
Ψ(n) :=

∑

k∈Z
ka

(n)
k ȧ

(n)
k + 2πi

∑

k∈Z
k|a(n)

k |2Λ̇n .

From Lemma 5.5 and (5.23) we obtain
∥∥∥Ψ(n) −Ψ(n)

N

∥∥∥
2
≤ O(N−1/2)
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so Ψ(n) → Ψ in the weak L2 norm. Then, (5.24) implies that Λ̇ + Ψ ≡ 0 (as an L2([0, 1])
function), and the weak limit Λ is an optimal shift.

Finally, the uniqueness of the optimal shift function Λ, implied by Lemma 5.4, guarantees
that the limit Λ is independent of the subsequence, and the weak convergence of Λn follows.

6 Examples revisited

We shall first consider Example 4 of the introduction:

Rigid rotation µ: A rigid rotation is characterized by

µt+σ =
[
RX(t+σ)−X(t)

]
#

µt ∀t, σ ∈ R (6.1)

where Rσ(x) =: x+σ mod 1 and X(t) is a deterministic, continuous orbit with a prescribed
topological degree d. If, in addition, µ ∈ H∞

C then (6.1) corresponds to a density of the form
ρ(x, t) = g(x −X(t)) with g a positive, smooth probability density on R1 mod Z and X a
smooth orbit. Let us compute the rotation number associated with such µ. In the special
gauge F (0, t) = 0 the cumulation function F is given by

F = G(x−X(t))−G(−X(t))

where G is the primitive of g. Thus

〈Ft(·, t)〉ρ−1(·,t) = Ẋ(t)

∫ 1
0

g(−X(t))−g(x−X(t))
g(x−X(t)) dx

∫ 1
0 g−1(x−X(t))dx

= Ẋ(t)

(
g(−X(t))− 1∫ 1

0 g−1(x)dx

)
. (6.2)

Recall

d =
∫ 1

0
Ẋ(t)dt .

Since G(·) is also a cumulation function, then:

d =
∫ 1

0

dG

dt
(X(t))dt = −

∫ 1

0

dG

dt
(−X(t))dt =

∫ 1

0
Ẋ(t)g(−X(t))dt

hence

r =
∫ 1

0
〈Ft(·, t)〉ρ−1(·,t)dt = d

(
1− 1∫ 1

0 g−1

)
. (6.3)

Since g is a normalized density,
∫ 1
0 g−1 ≥ 1 always, where equality holds only if g ≡ 1 (the

uniform Lebesgue measure). We thus proved

Proposition 6.1. For any rigid rotation µt ∈ H∞
C , the rotation number r is in the interval

[0, d) if d > 0, (d, 0] if d < 0, where d is the degree of the deterministic orbit t → X(t) . In
addition, r = 0 iff either d = 0 or g ≡ 1.
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We shall now prove that the rotation number is not continuous with respect to weak
convergence. Let g be a strictly positive and smooth density on S1, identified with a 1-
periodic density function on R. Let {gj} a sequence of smooth and positive densities such
that

gj(x) = g(x) for x ∈ R/(0, 1/j) mod Z

and

lim
j→∞

∫ 1

0

1
gj

(x)dx = ∞ .

Let ρj(x, t) = gj(x−X(t)), ρ(x, t) = g(x−X(t)) and µj , µ the corresponding orbits, where X
is a smooth, deterministic circle orbit with a topological degree d ∈ Z. A direct computation,
similar to (6.2), yields

〈
F 2

t

〉
ρ−1 = |Ẋ|2

[
g2(−X(t))− 2

g(−X(t))∫ 1
0 g−1(x)dx

+
1∫ 1

0 g−1(x)dx

]
(6.4)

and correspondingly for µj . Using (6.2), (6.4) and (4.5) we obtain

||µ||2 =

√
1− 1∫ 1

0 g−1(x)dx

√∫ 1

0
|Ẋ(t)|2dt ; ||µj ||2 =

√
1− 1∫ 1

0 g−1
j (x)dx

√∫ 1

0
|Ẋ(t)|2dt .

(6.5)
It follows that

lim
j→∞

||µj ||2 =

√∫ 1

0
|Ẋ(t)|2dt > ||µ||2.

In particular {µj} are uniformly bounded in HC,2. The convergence of µj to µ in C
(
[0, 1], C∗(S1)

)
is evident, hence the weak convergence of µj to µ is established via Definition 2.

On the other hand, by (6.3), limj→∞ r(µj) = d, while r(µ) 6= d. Since d can be either
positive or negative integer it follows that the rotation number is neither upper nor lower
semi-continuous with respect to weak convergence.

We shall now revisit Example 1 of the introduction, and ask whether the rotation number
so defined contains the topological degree of a deterministic, continuous circle orbit X : S1 →
S1? It turns out that it is, indeed, the case, provided Ẋ ∈ L2(S1).

Proposition 6.2. Assume
∫ 1
0 |Ẋ(t)|2dt < ∞. Let µt = δx−X(t). Then µ = µtdt ∈ HC,2 and

the rotation number of µ is an integer, coinciding with the topological degree of the continuous
orbit X.

Proof. Let gj be a sequence of smooth, strictly positive 1-periodic densities on R such that

lim
j→∞

gj =
∞∑

i=−∞
δx−i (6.6)

as distributions. Let Xj be a sequence of smooth orbits which converges strongly to X,
namely

lim
j→∞

∫ 1

0
|Ẋj(t)− Ẋ(t)|2dt = 0 .
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Let Gj the cumulation functions corresponding to gj , and Gj(x − Xj(t)) the cumulation
functions of the sequence of rigid rotations. Evidently, µj =: gj(x − Xj(t))dxdt ∈ H∞

C

converges to µ = δX(t)−xdt uniformly in C
(
[0, 1];C∗(S1)

)
. Since

limj→∞
∫ 1
0 g−1

j (x)dx = ∞ we obtain from (6.5) that limj→∞ ||µj ||22 =
∫ 1
0 |Ẋ|2dt. In particular,

||µj ||2 are uniformly bounded and µj → µ in the weak topology.
Moreover from (2.1) and (2.2) we obtain that ||µ||22 =

∫ 1
0 |Ẋ|2dt. Lemma 2.5 implies that

µj → µ in the strong topology as well. By Theorem 5.1 we obtain the convergence of r(µj)
to r(µ). Since µj are rigid rotations and

∫ 1
0 g−1

j (x)dx = ∞ we obtain, as in the proof of
Proposition 6.1, that r(µj) converges to the degree of X.

We now proceed to a special case of Example 3:

Proposition 6.3. Let

µt =
N∑

i

βiδ(Xi(t)−x)

where Xi are C1 orbits of degree di ∈ Z and
∑N

1 βi = 1, βi > 0. Then µ ∈ HC,2 and
r(µ) =

∑
βidi.

Proof. As in Proposition 6.2 we can show that µ ∈ HC,2 and

||µ||22 =
N∑

1

βi

∫ 1

0

∣∣∣Ẋi

∣∣∣
2
dt . (6.7)

Let Gj,x = gj be as in the proof of Proposition 6.2, so, in the special gauge F (0, t) = 0,

Fj(x, t) =
N∑

i=1

βi [Gj(x−Xi(t))−Gj(−Xi(t))]

be a sequence of cumulation functions and

ρj(x, t) =
N∑

i=1

βigj(x−Xi(t))

the corresponding densities. Proceeding similarly to (6.2) we obtain

〈Fj,t(·, t)〉ρ−1
j (·,t) =

∑

i

βiẊi(t)

∫ 1
0

gj(−Xi(t))−gj(x−Xi(t))
ρj(x,t) dx

∫ 1
0 ρ−1

j (x, t)dx

=
∑

i

βiẊi(t)


gj(−Xi(t))−

∫ 1
0

gj(x−Xi(t))
ρj(x,t) dx

∫ 1
0 ρ−1

j (x, t)dx


 . (6.8)

Next we note that
∫ 1
0 gj(x−Xi(t))/ρj(x, t)dx is uniformly bounded in t and∫ 1

0 ρ−1
j (x, t)dx →∞ uniformly as j →∞. Then, as j →∞:

r(µj) =
∫ 1

0
〈Fj,t〉 dt =

∑

i

βi

∫ 1

0
Ẋi(t)gj(−Xi(t))dt + o(1) =

∑

i

βidi + o(1) (6.9)
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as in (6.3). Next, we prove that µj converges in the strong D topology. For this we estimate

〈
F 2

j,t

〉
=

∑

i,k

βiβkẊi(t)Ẋk(t)

{
gj(−Xi(t))gj(Xk(t)) +

1∫ 1
0 ρ−1

j (x, t)dx

[∫ 1

0

gj(x−Xi(t))gj(x−Xk(t))
ρj(x, t)

dx− gj(−Xi)
∫ 1

0

gj(x−Xk(t))
ρj(x, t)

dx

]}

hence, by (4.5) and (6.8)

||µ||22 =
∫ 1

0

∑

i,k

βiβkẊi(t)Ẋk(t)
{∫ 1

0

gj(x−Xi(t))gj(x−Xk(t))
ρj(x, t)

dx

−
(∫ 1

0
ρ−1

j (x, t)dx

)−1 ∫ 1

0

gj(x−Xi(t))
ρj(x, t)

dx

∫ 1

0

gj(x−Xk(t))
ρj(x, t)

dx

}
dt . (6.10)

Now, the estimates we got, preceding (6.9), on
∫ 1
0 gj(x−Xi(t))/ρj(x, t)dx and

∫ 1
0 ρ−1

j (x, t)dx
kill the second term in (6.10) in the limit j → ∞. As for the first term, we observe that
ρ−1

j (x, t)gj(x − Xi(t)) is, on the one hand, uniformly bounded with respect to j and t as a
function of x and for some δj > εj , both converging to 0:

lim
j→∞

sup
|x−Xi(t)|≤εj

∣∣∣ρ−1
j (x, t)gj(x−Xi(t))− β−1

i

∣∣∣ = 0

and
lim

j→∞
sup

|x−Xi(t)|≥δj

ρ−1
j (x, t)gj(x−Xi(t)) = 0

uniformly in t. From these and (6.6) we obtain

∫ 1

0

∫ 1

0

gj(x−Xi(t))gj(x−Xk(t))
ρj(x, t)

dxdt = β−1
i δi,k ,

so (6.10) yields

lim
j→∞

||µj ||22 =
∑

i

βi

∫ 1

0

∣∣∣Ẋi(t)
∣∣∣
2
dt .

From (6.7) and Lemma 2.5 it follows that µj → µ in the strong D topology. Hence, Theo-
rem 5.1 implies that r(µj) → r(µ). Finally, (6.9) completes the proof.

7 Conclusions and open problems

We attempted a generalization of topological degree for (probabilistic) measure valued circle
mappings µ. It was done by restriction to those mappings for which we could associate
some weak notion of flow. Our treatment, however, is not complete because the associated
velocity field is assumed to be an L2 function with respect to the measure µ. Since there are
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continuous mappings X : S1 → S1 for which
∫
S1 |Ẋ|2dt is not defined, we cannot extend our

definitions to measures like δx−X(t)dt of the above form. The first question is:

Q1 Can the rotation number be extended to include all orbits µ ∈ C
(
S1;C∗(S1)

)
? Can

it be extended further beyond this class to include, say, the measure valued VMO (see, e.g.,
[BN])?

The second question is related to the actual existence of a flow for the space HC,2. We
know that a velocity field v exists in L2 [µ] by definition. In which sense the flow ẋ = v(x, t)
can be defined, such that limt→∞ t−1x(t) is consistent with the rotation number? Can it
always be defined as a deterministic flow?

To demonstrate this point, let us reconsider Example (3) of the introduction. Assume
that all intersections are binary, that is, if t∗ is the intersection time of orbits i and j, i.e.
Xi(t∗) = Xj(t∗), then Xk(t∗) 6= Xi(t∗) for any k 6= i, j. We may associate a stochastic flow
Z(t) on the support of this measure as follows:
Let Z(t0) = Xi(t0) at t0 which is not an intersection time of the orbit Xi with any other orbit,
and Xj is the first orbit intersection Xi after t0. Let t∗ > t0 be the time of this intersection.
Then Z(t) = Xi(t) for t0 ≤ t ≤ t∗ while Z(t) = Xj(t) for a right neighborhood of t∗ with
probability p = min{1, βj/βi}, Z(t) = Xi(t) otherwise.

With the above definition we obtain Z(t) as a parameterized family of random variables.
The question we address is:

Q2 Is limt→∞ t−1Z(t) =
∑

βjdj with probability 1?

Notice that, in the special case βi = 1/N for all i = 1, 2, . . . n, the above process is a
deterministic one. It can easily be proved by elementary arguments that, in this case, the
answer to Q2 is positive.

The next question concerns generalizations of the results of this paper to higher dimension.
Here we may think about several possible directions.
One possibility is to consider orbits of periodic measures supported on the n− torus Tn.
Hence µ = µtdt with µ0 = µ1 and, for each t, µt is a probability measure on Tn. Note that
for a deterministic orbit X : S1 → Tn, a degree d ∈ Zn is defined.

Q3 Is it possible to extend this definition to a rotation vector r ∈ Rn for µ ∈ HC,2 (Tn)?
Finally, we mention again the conjecture suggested at the introduction:

Q4 Can the condition of Theorem 5.2 be relaxed to ‖ρ−1‖1 < K?
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